CSE446: Perceptron
Spring 2017

Ali Farhadi
Hessam Bagherinezhad

Slides adapted from Dan Klein, Luke Zettlemoyer

Who needs probabilities?

Previously: model data

H H H 1 mpg cylinders | displacemen horsepower weight acceleration modelyearmake
with distributions

good 4 97 75 2265 18.2 77 asia

. o X Y bad 6 199 90| 2648 15 70 amer

J O I nt ° P) bad 4 121 110, 2600 12.8 77 eurof

bad 8 350 175 4100 13 73 amer

iy bad 6 198 95 3102 16.5 74|amer

— €e.§. Naive BayeS bad 4 108 94 2379 16.5 73 asia

. . bad 4 113 95 2228 14 71|asia

Cond|t|0na|: P(Y | X) :bad 8: 302 139 3570 128 78 amer
— e.g. Logistic Regression | : : | . :

good 4 120 79 2625 18.6 82 amer

. bad 8 455 225 4425 10 70 amer

B u t Wa |t W hy good 4 107 86 2464 15.5 76 eurof

’ bad 5 131 103| 2830 15.9 78 eurof

probabilities?

Lets try to be error-
driven!

Generative vs. Discriminative

* Generative classifiers:
— E.g. naive Bayes
— Ajoint probability model with evidence variables
— Query model for causes given evidence

 Discriminative classifiers:

— No generative model, no Bayes rule, maybe no
probabilities at all!

— Try to predict the label Y directly from X
— Robust, accurate with varied features
— Loosely: mistake driven rather than model driven

Discriminative vs. generative

» Generative model

(The artist)

* Discriminative model

(The lousy
painter)

» Classification function

p(Data, No Zebra)

o1t |p(Data, Zebra)

p(Zebra|Data)

> < p(No Zebra|Data)
0.5
ol . ‘ ‘

0 10 20 30 40 50 60 70
X = data

Im notoeTbr

label = Fy p,.,(Data)
-

| | | | | |
0 10 20 30 40 50 60 70
X = data

80

Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activation,, (x) =

If the activation is:
— Positive, output class 1
— Negative, output class 2

Example: Spam

 Imagine 3 features (spam is “positive” class):
— free (number of occurrences of “free”)
— money (occurrences of “money”)
— BIAS (intercept, always has value 1)

X w

BIAS : 1 BIAS : -3 (1)(_3) v

free : 1 free : 4 (1)(4) +

“free money" money : 1 money : 2 (1> (2> T
=3

wex >0 = SPAM!!!

Binary Decision Rule

* In the space of feature vectors
— Examples are points
— Any weight vector is a hyperplane

— One side corresponds to y=+1 > 2
c
— —_— O
Other corresponds to y=-1 e +1 = SPAM
W i
BIAS : -3 0
free : 4 -1=HAM 0 1

money : 2

Binary Perceptron Algorithm

e Start with zero weights: w=0
 Fort=1..T (T passes over data)
— For i=1..n: (each training example)
* Classify with current weights
y = stgn(w - z*)
— sign(x) is +1 if x>0, else -1
* If correct (i.e., y=yi), no change! w + (—1
* |If wrong: update

w=w+y'x

Initial:
* Fort=1.T, i=1..n: * w=[0,0]

: i t=1,i=1
B S?gn(w ') « [0,0]*[3,2] = 0, sign(0)=-1
— ify#zy o e w=[0,0]+[3,2] = [3,2]
w=w-+y'z t=1,i=2
e [3,2]°[-2,2]=-2, sign(-2)=-1
t=1,i=3
* [3,2]°[-2,-3]=-12, sign(-12)=-1
E - * e w=[3,2]+[2,-3] =[1,-1]
3 2 1 t=2,i=1
X * [1,-1]°[3,2]=1, sign(1)=1
-2 2 -1 1 t=2,i=2
X5=X4 e [1,-1]°[-2,2]=-4, sign(-4)=-1
-2 -3 1 + t=2,i=3

e [1,-1]°[-2,-3]=1, sign(1)=1

Converged!!!
* V=W X HWoX, 2 Y=X X
* So, aty=0 = X,=X;

Multiclass Decision example:yis123;

* We are fitting three planes: wy,

Rule | W W

Predict i when w; ¢ X is highest

W1 L
 |f we have more than two 1

classes:
\ .
— Have a weight vector for w2 - T

each class: Wy \
i &

— Calculate an activation for w3
each class

activationy (z,y) = w, - x
— Highest activation wins

X

y* = arg max(activationy,(z, y))
Y

Example

“win the vote” ‘

WSPORTS
BIAS : =2
win : 4
game 4
vote 0
the 0

X WSPORTS = 2

BIAS
win
game
vote
the
WpOLITICS
BIAS 1
win 2
game 0
vote 4
the 0

T-WporLirtics = 7

POLITICS wins!!!

1

1

0

1

1

WTECH

BIAS 2
win : 0
game : 2
vote 0
the 0

T WTECH = 2

The Multi-class Perceptron Alg.

e Start with zero weights
 Fort=1.T, i=1..n (T times over data)

— Classify with current weights Wy
Y = argmaxw, - T
Y .
— If correct (y=y,), no change! Wy — &

* |f wrong: subtract features " from
weights for predicted classw, and add
them to weights for correct classw,,

Wy
W

)
wyi+x

yi

Perceptron vs. logistic regression

Update rule
* Logistic regression:

w§t+1) - ,w?:(t) 4+ nzmg[yj —P(YI=1|x,w)]
J
— Need all of training data

* Perceptron:

fmistake, W = W + Y T

— Update only with one example.
— ldeal for online algorithms.

Linearly Separable (binary case)

* The data is linearly separable with margin v, if:

Jw. vty (w-x') > v >0

* Fory=1
w -t > Y

* Fory=-1
w -zt < —y

Mistake Bound for Perceptron l#l2= /> =

Assume data is separable with margin v:

Jw* s.t. |Jw*||2 = 1 and Vt.y'(w* - 2") > v

Also assume there is a number R such that:
vtz < R

Theorem: The number of mistakes (parameter updates) made
by the perceptron is bounded:
R2
mistakes < —
~

Constant with respect to # of examples!

Perceptron Convergence (by Induction)

Let wk be the weights after the k-th update (mistake), we will
show that:

B2y < w3 < kR?
Therefore: R2
k< —
8
Because R and y are fixed constants that do not change as you
learn, there are a finite number of updates!
Proof does each bound separately (next two slides)

Perceptron update:
Lower bound [w=w+ et]

* Remember our margin assumption:
Jw* s.t. [Jw*||s = 1 and Vt.y' (w* - 2%) > ~
* Now, by the definition of the perceptron update, for k-th
mistake on t-th training example:
wk—l—l ¥ = (wk + ytazt) 't
_ wk Cw* _|_yt(w>|< . xt)
> wk w4y

* So, by induction with w°=0, for all k: Because:

wh - w” < w2 x [lw*l2

ky < w” - w? “
k / ande ||2 =1
g ,

< w 2

2,2 k2
By < w5

~

Perceptron update: Data Assumption:
Upper Bound [w=w+y's!] e |

e By the definition of the Perceptron update, for k-th mistake
on t-th training example:

< R? because
lw* 3 = [[w® + 2|3 (') = Land||a" |2 < R

= [+ (") [2"]3 + 2y"a" -

< [w*|3 + B2 S~

(")
. . . because Perceptron made
* So, by induction with w,=0 have, for all k: <0 error (y* has different sign
than xtew?t)

|wellz < kR? ~ g

Perceptron Convergence (by Induction)

Let wk be the weights after the k-th update (mistake), we will
show that:

Ey? < [Jw®||5 < kR?

Therefore: R2
k< —
8
Because R and y are fixed constants that do not change as you
learn, there are a finite number of updates!
If there is a linear separator, Perceptron will find it!!!

to the Perceptron: w=w + y’ x’

2 easy steps!
e Logistic Regression: (in vector notation)' v is {0,1}

w—w+nz Py |27, w)]a?

* Perceptron: when y is {0,1}:
w=w+ [y —sign’(w-2?)]z’
* sign®(x) = +1 if x>0 and 0 otherwise
Differences?
* Drop the 2, over training examples: online vs.
batch learning

« Drop the dist'n: probabilistic vs. error driven
learning

FrOm LOgiStiC RegreSSiOn {Perceptron update wheny is {-1,1}: J

Properties of Perceptrons

e Separability: some parameters get the Separable
training set perfectly correct

* Convergence: if the training is +
separable, perceptron will eventually B + o
converge (binary case) - -

* Mistake Bound: the maximum number - .

of mistakes (binary case) related to the

margin or degree of separability
Non-Separable

R2
mistakes < — + 4
Y - + &

- +

Problems with the Perceptron

= Noise: if the data isn'’t
separable, weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

* »
. . . . *
= Mediocre generalization: finds a - - ’
“barely” separating solution ° .
training
= Overtraining: test / held-out G
accuracy usually rises, then falls =
- . . - O
= QOvertraining is a kind of overfitting O ht‘;fjt_ out

iterations

Linear Separators

= Which of these linear separators is optimal?

Support Vector Machines

= Maximizing the margin: good according to intuition,
theory, practice

= Support vector machines (SVMSs) find the separator with
max margin

SVM

min =||w]||?
w2

Vi,y wy*-xiZwy-xi—Fl

Three Views of *© Naive Bayes:

Classification

(more to come later in
course!) — Training: one pass through the data

— Parameters from data statistics
— Parameters: probabilistic interpretation

* Logistic Regression:
— Parameters from gradient ascent

— Parameters: linear, probabilistic model,
and discriminative

— Training: gradient ascent (usually batch),
regularize to stop overfitting

* The perceptron:

Held-Out — Parameters from reactions to mistakes

Data . ..)))
— Parameters: discriminative mterpretatlon

. — Training: go through the data until held-
Data out accuracy maxes out

