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Lets take a(nother) probabilistic 
approach!!!

• Previously: directly 
estimate the data 
distribution P(X,Y)! 

– challenging due to size of 
distribution! 

– make Naïve Bayes 
assumption: only need 
P(Xi|Y)! 

• But wait, we classify 
according to: 

– maxY P(Y|X) 
• Why not learn P(Y|X) 

directly?

mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia
bad 6 199 90 2648 15 70 america
bad 4 121 110 2600 12.8 77 europe
bad 8 350 175 4100 13 73 america
bad 6 198 95 3102 16.5 74 america
bad 4 108 94 2379 16.5 73 asia
bad 4 113 95 2228 14 71 asia
bad 8 302 139 3570 12.8 78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
good 4 120 79 2625 18.6 82 america
bad 8 455 225 4425 10 70 america
good 4 107 86 2464 15.5 76 europe
bad 5 131 103 2830 15.9 78 europe



What does that mean tho?
• P(Y|X): P(mpg=good | cylinders=6, maker=europe, …) 

– If I randomly pick a European car with 6 cylinders, what’s the 
probability that it has a good mpg? 

• Possible answer: 70% 
• And, of course, P(mpg=bad | cylinders=6, maker=europe, …) = 30% 

• P(X,Y): P(mpg=good, cylinders=6, maker=europe, …) 
– If I pick a car randomly, what’s the probability it’s European, has 6 

cylinders and a good mpg? 
• Possible answer: 3.4% 
• Let’s say P(mpg=good, cylnd=6, mkr=eu, …) = 1.8% 
• Now we know P(cylnd=6, mkr=eu, …) = 3.4 + 1.8 = 5.2% 

– This has way more information! 
• And is harder to train.

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia
bad 6 199 90 2648 15 70 america
bad 4 121 110 2600 12.8 77 europe
bad 8 350 175 4100 13 73 america
bad 6 198 95 3102 16.5 74 america
bad 4 108 94 2379 16.5 73 asia
bad 4 113 95 2228 14 71 asia
bad 8 302 139 3570 12.8 78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
good 4 120 79 2625 18.6 82 america
bad 8 455 225 4425 10 70 america
good 4 107 86 2464 15.5 76 europe
bad 5 131 103 2830 15.9 78 europe
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(The lousy  
painter)

Discriminative vs. generative
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Logistic Regression
• Learn P(Y|X) directly! 

• Reuse ideas from regression, but let 
y-intercept define the probability 

• With normalization constants:

Exponential:



Logistic function

 

 



Logistic Regression: decision boundary 

A Linear Classifier!

• Prediction: Output the Y with 
highest P(Y|X) 
– Output Y=1 if 

w
.X

+w
0 

= 
0



Visualizing 1D inputs

Notes:  
• Defines a probability distribution over Y in {0,1} for every possible input X 
• Decision boundary: P(Y=0|X,w)=0.5 when at the y=0 point on the line 
• Slope of line defines how quickly probabilities go to 0 or 1 around decision 

boundary

w1=5, w0=0 w1=1, w0=0 

w1=1, w0=0 w1=1, w0=1 w1=1, w0=-1 

w1=10, w0=0 



Visualizing 2D inputs

w1=1, w2=1, w0=0 w1=-1, w2=1, w0=0 

w1=10, w2=10, w0=0 w1=-1, w2=1, w0=5 

What about higher dimensions?  
• Difficult to visualize! 
• P(Y=0|X,w) decreases as w0+Σiwixi increases 
• Decision boundary is defined by w0+Σiwixi =0 hyperplane



Loss functions / Learning Objectives: 
Likelihood v. Conditional Likelihood

• Generative (Naïve Bayes) Loss function:  
 Data likelihood 

• But, discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 

– Doesn’t waste effort learning P(X|Y) 
– Discriminative models cannot compute P(Xj|Yj)!

 

 



Conditional Log Likelihood  
(the binary case only)

…

equal because yj is in {0,1}

remaining steps: substitute definitions, expand logs, and simplify

 



Logistic Regression Parameter Estimation:  
Maximize Conditional Log Likelihood

Good news: l(w) is a concave function of w 

→no locally optimal solutions!

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions “easy” to optimize



Optimizing convex function – 
Gradient ascent 

• Conditional likelihood for Logistic Regression is convex!  

• Gradient ascent is simplest of optimization approaches 
– Yet works in most cases

Gradient:

Update rule:
Learning rate, η>0



Maximize Conditional Log Likelihood: Gradient ascent



x2

x1

x1 x2 y
3 -3 1

-2 2 0

t=0: 
w = [w0,w1,w2] = [0,0,0]  
P(Y0=1|x0,w) α exp(0+0*3+0*-3) = 0.5 
P(Y1=1|x1,w) α exp(0+0*-2+0*2) = 0.5 
i=0, j=0: x0

0(y0-P(Y=1|x0,w)) = 1(1-0.5) = 0.5 
i=0, j=1: x0

1(y1-P(Y=1|x1,w)) = 1(0-0.5) = -0.5 
i=1, j=0: x1

0(y0-P(Y=1|x0,w)) = 3(1-0.5) = 1.5 
i=1, j=1: x1

1(y1-P(Y=1|x1,w)) = -2(0-0.5) = 1.0 
i=2, j=0: x2

0(y0-P(Y=1|x0,w)) = -3(1-0.5) = -1.5 
i=2, j=1: x2

1(y1-P(Y=1|x1,w)) = 2(0-0.5) = -1.0 
grad = [ 0.5-0.5, 1.5+1.0, -1.5-1] = [0,2.5,-2.5] 
t=1:  
η=0.1 ! w = [0,0,0] + 0.1 * [0,2.5,-2.5] = 
[0,0.25,-0.25] 
P(Y0=1|x0,w) α exp(0+0.25*3-0.25*-3) = 0.82 
P(Y1=1|x1,w) α exp(0+0.25*-2-0.25*2) = 0.27 
i=0, j=0: x0

0(y0-P(Y0=1|x0,w)) = 1(1-0.82) = 0.18 
i=0, j=1: x0

1(y1-P(Y1=1|x1,w)) = 1(0-0.27) = 
-0.27 
i=1, j=0: x1

0(y0-P(Y0=1|x0,w)) = 3(1-0.82) = 0.54 
i=1, j=1: x1

1(y1-P(Y1=1|x1,w)) = -2(0-0.27) = 
0.54 
i=2, j=0: x2

0(y0-P(Y0=1|x0,w)) = -3(1-0.82) = 
-0.54 



Gradient Ascent for LR

Gradient ascent algorithm: (learning rate η > 0)  

do:

  

 For i=1…n: (iterate over weights)

until “change” < ε 
Loop over training examples!



Large parameters…

• Maximum likelihood solution: prefers higher weights 
– higher likelihood of (properly classified) examples close 

to decision boundary  
– larger influence of corresponding features on decision 
– can cause overfitting!!! 

• Regularization: penalize high weights 
– again, more on this later in the quarter

a=1 a=5 a=10



That’s all M(C)LE.  How about MAP?

• One common approach is to define priors 
on w 
– Normal distribution, zero mean, identity 

covariance 
– “Pushes” parameters towards zero 

• Often called Regularization 
– Helps avoid very large weights and 

overfitting 

• MAP estimate:



M(C)AP as Regularization

Penalizes high weights, also applicable in linear regression

• Add log p(w) to objective: 

– Quadratic penalty: drives weights towards zero 
– Adds a negative linear term to the gradients



MLE vs. MAP 
• Maximum conditional likelihood estimate 

• Maximum conditional a posteriori estimate



x2

x1

x1 x2 y
3 -3 1

-2 2 0

t=0: 
w = [w0,w1,w2] = [0,0,0]  
… see earlier slide, same computations as 
without regularization… 
grad = [ 0.5-0.5, 1.5+1.0, -1.5-1] = 
[0,2.5,-2.5] 
λ=0.1 ! grad -= 0.1 * [0,0,0] 
t=1:  
η=0.1 ! w = [0,0,0] + 0.1 * [0,2.5,-2.5] = 
[0,0.25,-0.25] 
… see earlier slide, same computations as 
without regularization… 
grad = [0.13-0.27, 0.36+0.54, -0.36-0.54]  
= [-0.14,1,-1] 
λ=0.1 ! grad -= 0.1 * [0,0.25,-0.25] 
t=2:  
…. 



Logistic regression for discrete 
classification

Logistic regression in more general case, where  
set of possible Y is {y1,…,yR} 
• Define a weight vector wi for each yi, i=1,…,R-1

P(Y=y1|X) 
biggest

P(Y=y2|X) 
biggest

P(Y=y3|X) 
biggest

…



Logistic regression: discrete Y

• Logistic regression in more general case, where  
Y is in the set {y1,…,yR} 

 for k<R 

 for k=R (normalization, so no weights for this class) 

Features can be discrete or continuous!



Logistic regression v. Naïve Bayes
• Consider learning f: X ! Y, where 

–  X is a vector of real-valued features, < X1 … Xn > 

–  Y is boolean 

• Could use a Gaussian Naïve Bayes classifier 
–  assume all Xi are conditionally independent given Y 

–  model P(Xi | Y = yk) as Gaussian N(µik,σi) 

–  model P(Y) as Bernoulli(θ,1-θ) 

•  What does that imply about the form of P(Y|X)?

Cool!!!!



Derive form for P(Y|X) for continuous Xi 

only for Naïve Bayes models

up to now, all arithmetic

Can we solve for wi ? 
• Yes, but only in Gaussian case Looks like a setting for w0?



Ratio of class-conditional probabilities

…

Linear function! 
Coefficients 
expressed with 
original Gaussian 
parameters!



Derive form for P(Y|X) for continuous Xi 



Gaussian Naïve Bayes vs. Logistic Regression

• Representation equivalence 
– But only in a special case!!! (GNB with class-independent variances) 

• But what’s the difference??? 
• LR makes no assumptions about P(X|Y) in learning!!! 
• Loss function!!! 

– Optimize different functions ! Obtain different solutions

Set of Gaussian  
Naïve Bayes parameters 

(feature variance  
independent of class label)

Set of Logistic  
Regression parameters

Can go both 
ways, we only did 

one way



Naïve Bayes vs. Logistic Regression

Consider Y boolean, Xi continuous, X=<X1 ... Xn> 

Number of parameters: 
• Naïve Bayes: 4n +1 
• Logistic Regression: n+1 

Estimation method: 
• Naïve Bayes parameter estimates are uncoupled 
• Logistic Regression parameter estimates are 

coupled



 Naïve Bayes vs. Logistic Regression

• Generative vs. Discriminative classifiers 
•  Asymptotic comparison  

(# training examples ! infinity) 
–  when model correct 

•  GNB (with class independent variances) and  
LR produce identical classifiers 

–  when model incorrect 
•  LR is less biased – does not assume conditional 

independence 
– therefore LR expected to outperform GNB

[Ng & Jordan, 2002]



Naïve Bayes vs. Logistic Regression

• Generative vs. Discriminative classifiers 
• Non-asymptotic analysis 

–  convergence rate of parameter estimates,  
   (n = # of attributes in X) 
• Size of training data to get close to infinite data 

solution 
• Naïve Bayes needs O(log n) samples 
• Logistic Regression needs O(n) samples 

– GNB converges more quickly to its (perhaps less 
helpful) asymptotic estimates

[Ng & Jordan, 2002]



©Carlos Guestrin 2005-2009

Some 
experiments 

from UCI data 
sets

32

Naïve bayes 
Logistic Regression



What you should know about 
Logistic Regression (LR)

• Gaussian Naïve Bayes with class-independent variances 
representationally equivalent to LR 
– Solution differs because of objective (loss) function 

• In general, NB and LR make different assumptions 
– NB: Features independent given class ! assumption on P(X|Y) 
– LR: Functional form of P(Y|X), no assumption on P(X|Y) 

• LR is a linear classifier 
– decision rule is a hyperplane 

• LR optimized by conditional likelihood 
– no closed-form solution 
– concave ! global optimum with gradient ascent 
– Maximum conditional a posteriori corresponds to regularization 

• Convergence rates 
– GNB (usually) needs less data 
– LR (usually) gets to better solutions in the limit


