
CSE446: Linear Regression

Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin and Luke Zettlemoyer



Prediction of continuous variables

• Billionaire says: Wait, that’s not what I meant!     

• You say: Chill out, dude.

• He says: I want to predict a continuous 
variable for continuous inputs: I want to 
predict salaries from GPA.

• You say: I can regress that…
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Ordinary Least Squares (OLS)
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The regression problem
• Instances: <xj, tj>
• Learn: Mapping from x to t(x)

• Hypothesis space:
– Given, basis functions {h1,…,hk}

–

– Find coeffs w={w1,…,wk}

– Why is this usually called linear regression?
• model is linear in the parameters
• Can we estimate functions that are not lines???



Linear Basis: 1D input

x

y

Need a bias term: {h1(x) = x, h2(x)=1}



x

y

• Parabola: {h1(x) = x2, h2(x)=x, h3(x)=1}

• 2D: {h1(x) = x1
2, h2(x)= x2

2, h3(x)=x1x2,…}

• Can define any basis functions hi(x) for n-

dimensional input x=<x1,…,xn>



The regression problem
• Instances: <xj, tj>
• Learn: Mapping from x to t(x)

• Hypothesis space:
– Given, basis functions {h1,…,hk}

–

– Find coeffs w={w1,…,wk}

– Why is this usually called linear regression?
• model is linear in the parameters
• Can we estimate functions that are not lines???

• Precisely, minimize the residual squared error:
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Regression: matrix notation
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Regression: 
closed form 

solution



Regression solution: simple matrix math

where

k×k matrix 
for k basis functions 

k×1 vector
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But, why?

• Billionaire (again) says: Why sum squared 
error???

• You say: Gaussians, Dr. Gateson, Gaussians…

• Model: prediction is linear function plus 
Gaussian noise

– t(x) = i wi hi(x) + 

• Learn w using MLE:



Maximizing log-likelihood
Maximize wrt w:

Least-squares Linear Regression is MLE for Gaussians!!!



Regularization in Linear Regression
• One sign of overfitting: large parameter values!

• Regularized or penalized regressions modified 
learning object to penalize large parameters



Ridge Regression
• Introduce a new objective function:

– Prefer low error but also add a squared 

penalize for large weights

– λ is hyperparameter that balances tradeoff

– Explicitly writing out bias feature 

(essentially h0=1), which is not penalized



Ridge Regression: matrix notation
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Ridge Regression in Matrix Notation 
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Ridge 
Regression: 
closed form 

solution
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Regression solution: simple matrix math
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Compare to un-regularized regression:



Ridge Regression
How does varying lambda change w?

– Larger λ? Smaller λ?

– As λ 0?

• Becomes same a MLE, unregularized

– As λ ∞?

• All weights will be 0!



Ridge Coefficent Path

13 

Ridge Coefficient Path 

! Typical approach: select λ using cross validation, more on this 
later in the quarter 
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Error as a function of regularization 

parameter for a fixed model complexity 

λ=∞ λ=0 
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How to pick lambda?

• Experimentation cycle
– Select a hypothesis f to best 

match training set
– Tune hyperparameters on 

held-out set
• Try many different values of 

lambda, pick best one

• Or, can do k-fold cross 
validation
– No held-out set
– Divide training set into k 

subsets
– Repeatedly train on k-1 and 

test on remaining one
– Average the results

Training

Data

Held-Out 

(Development)

Data

Test

Data

Test

Data

Training

Part K

Training

Part 1

Training 

Part 2

…



Why squared regularization?
• Ridge:

• LASSO:

– Linear penalty pushes more weights to zero

– Allows for a type of feature selection

– But, not differentiable and no closed form 
solution….



Geometric Intuition

5 

Geometric intuition of regularized 

objectives in 1d 
! LASSO solution: 
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Picture of Lasso and Ridge regression
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Recall: Ridge Coefficient Path 

! Typical approach: select λ using cross validation 
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Now: LASSO Coefficient Path  
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Kevin Murphy 

textbook 
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Bias-Variance tradeoff – Intuition 

• Model too simple: does 
not fit the data well

– A biased solution

• Model too complex: small 
changes to the data, 
solution changes a lot

– A high-variance solution



Bias-Variance Tradeoff
• Choice of hypothesis class introduces learning 

bias

– More complex class → less bias

– More complex class → more variance



Training set error

• Given a dataset (Training data)

• Choose a loss function

– e.g., squared error (L2) for regression

• Training error: For a particular set of 
parameters, loss function on training data:



Training error as a function of model 
complexity



Prediction error

• Training set error can be poor measure 
of “quality” of solution

• Prediction error (true error): We really 
care about error over all possibilities:



Prediction error as a function of model 
complexity



Computing prediction error

• To correctly predict error

• Monte Carlo integration (sampling approximation)
• Sample a set of i.i.d. points {x1,…,xM} from p(x)

• Approximate integral with sample average

• Hard integral!

• May not know t(x) for every x, may not know p(x)



Why training set error doesn’t approximate 
prediction error?

• Sampling approximation of prediction error:

• Training error :

• Very similar equations!!! 
– Why is training set a bad measure of prediction error???



Why training set error doesn’t approximate 
prediction error?

• Sampling approximation of prediction error:

• Training error :

• Very similar equations!!! 
– Why is training set a bad measure of prediction error???

Because you cheated!!! 

Training error good estimate for a single w,

But you optimized w with respect to the training error, 

and found w that is good for this set of samples

Training error is a (optimistically) biased 

estimate of prediction error 



Test set error

• Given a dataset, randomly split it into two 
parts: 

– Training data – {x1,…, xNtrain}

– Test data – {x1,…, xNtest}

• Use training data to optimize parameters w

• Test set error: For the final solution w*, 
evaluate the error using:



Test set error as a function of model 
complexity



Overfitting: this slide is so important we 
are looking at it again!

• Assume:

– Data generated from distribution D(X,Y)

– A hypothesis space H

• Define: errors for hypothesis h ∈ H

– Training error: errortrain(h)

– Data (true) error: errortrue(h)

• We say h overfits the training data if there exists 

an h’ ∈ H such that:

errortrain(h) < errortrain(h’)

and

errortrue(h) > errortrue(h’)



Summary: error estimators 

• Gold Standard:

• Training: optimistically biased

• Test: our final measure



Error as a function of number of training 
examples for a fixed model complexity
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Error as function of regularization 
parameter, fixed model complexity

λ=0λ=∞



Summary: error estimators 

• Gold Standard:

• Training: optimistically biased

• Test: our final measure

Be careful!!! 

Test set only unbiased if you never never ever ever

do any any any any learning on the test data

For example, if you use the test set to select

the degree of the polynomial… no longer unbiased!!!

(We will address this problem later in the quarter)



What you need to know

• Regression

– Basis function = features

– Optimizing sum squared error

– Relationship between regression and Gaussians

• Regularization

– Ridge regression math

– LASSO Formulation

– How to set lambda

• Bias-Variance trade-off


