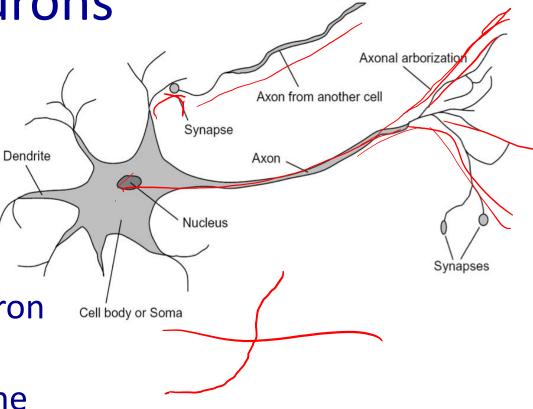
CSE446: Neural Networks Spring 2017

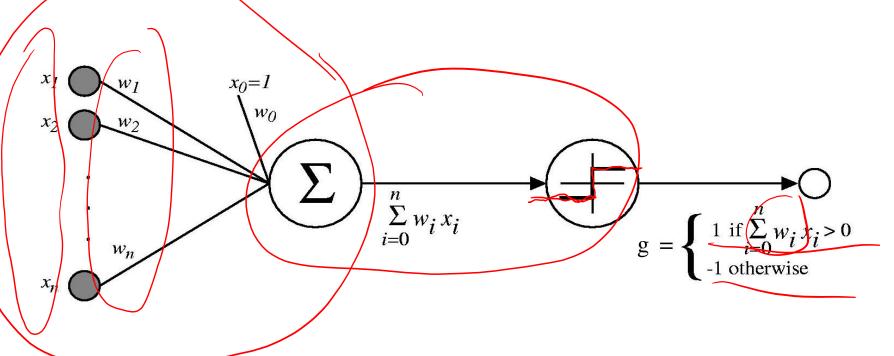
Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

Human Neurons

- Switching time
 - ~ 0.001 second
- Number of neurons
 10¹⁰
- Connections per neuron
 10⁴⁻⁵
- Scene recognition time
 - 0.1 seconds
- Number of cycles per scene recognition?
 100 → much parallel computation!

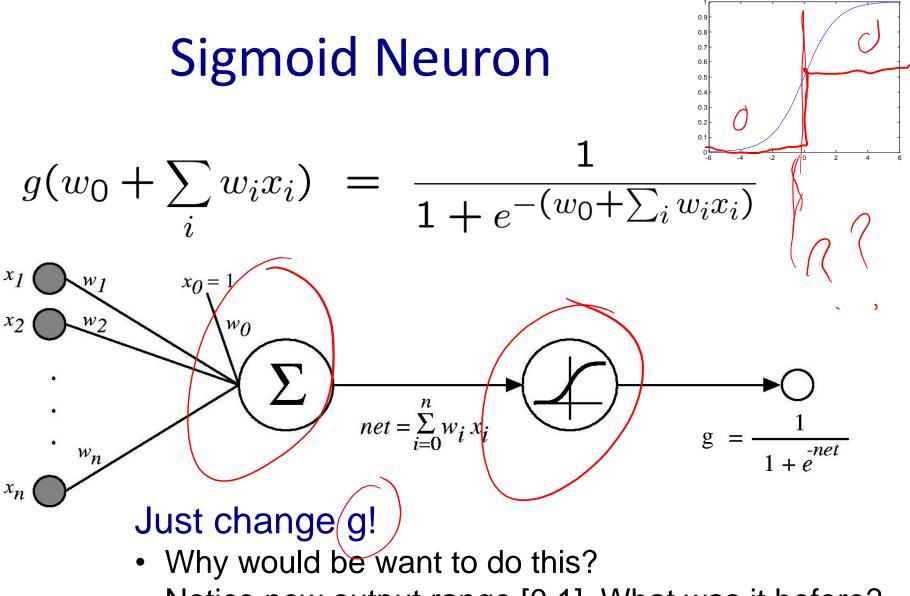


Perceptron as a Neural Network



This is one neuron:

- Input edges $x_1 \dots x_n$, along with basis
- The sum is represented graphically
- Sum passed through an activation function g

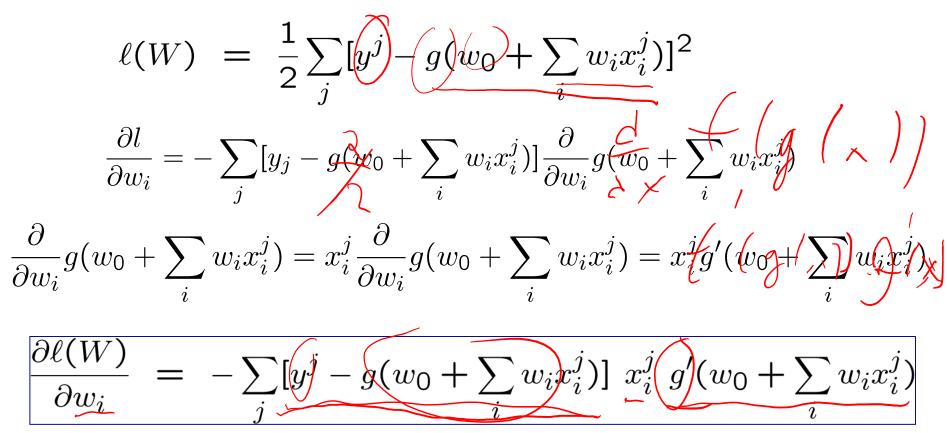


- Notice new output range [0,1]. What was it before?
- Look familiar?

Optimizing a neuron

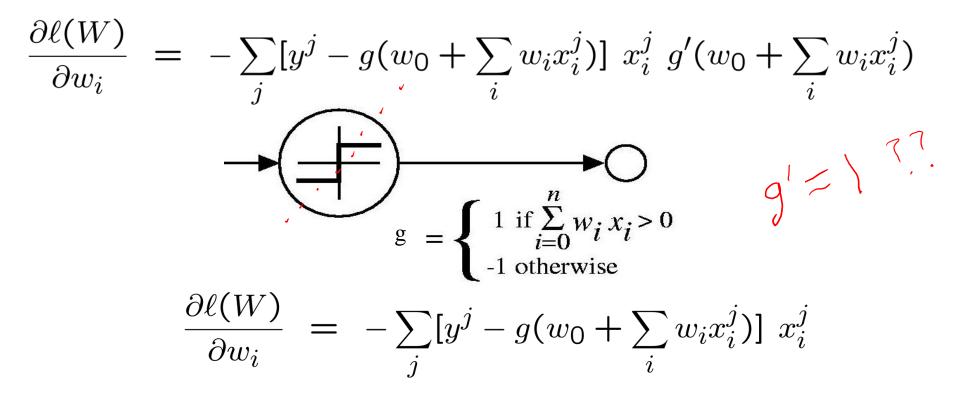
$$\frac{\partial}{\partial x}f(g(x)) = f'(g(x))g'(x)$$

We train to minimize sum-squared error



Solution just depends on g': derivative of activation function!

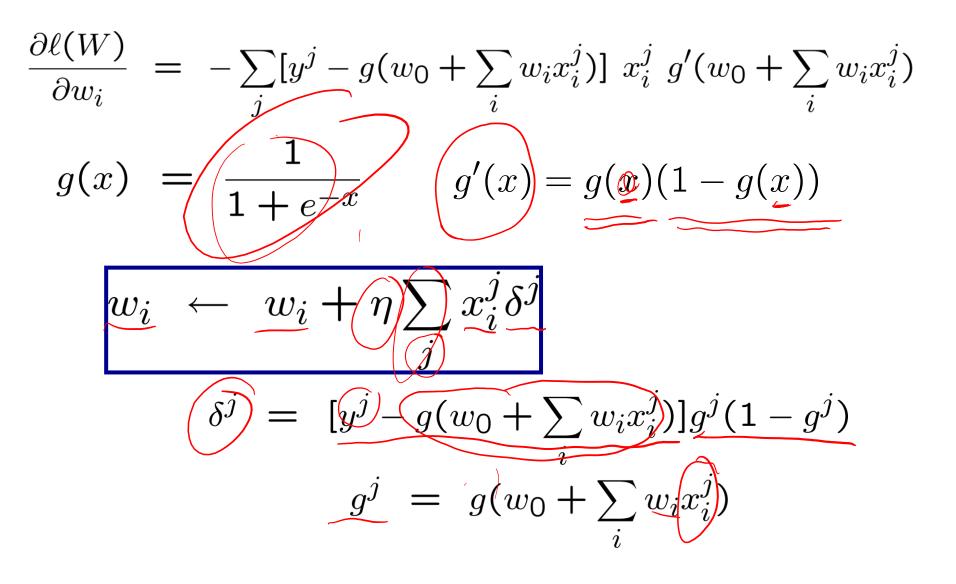
Re-deriving the perceptron update



For a specific, incorrect example:

• w = w + y * x (our familiar update!)

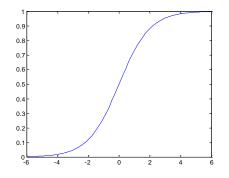
Sigmoid units: have to differentiate g



Aside: Comparison to logistic regression

P(Y = 1

• P(Y|X) represented by:



$$|x,W) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

= $g(w_0 + \sum_i w_i x_i)$
E:

$$\frac{\partial \ell(W)}{\partial w_i} = \sum_j x_i^j [y^j - P(Y^j = 1 \mid x^j, W)]$$

$$= \sum_j x_i^j [y^j - g(w_0 + \sum_i w_i x_i^j)]$$

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$

$$\delta^j = y^j - g(w_0 + \sum_i w_i x_i^j)$$

Perceptron, linear classification, Boolean functions: $x_i \in \{0,1\}$

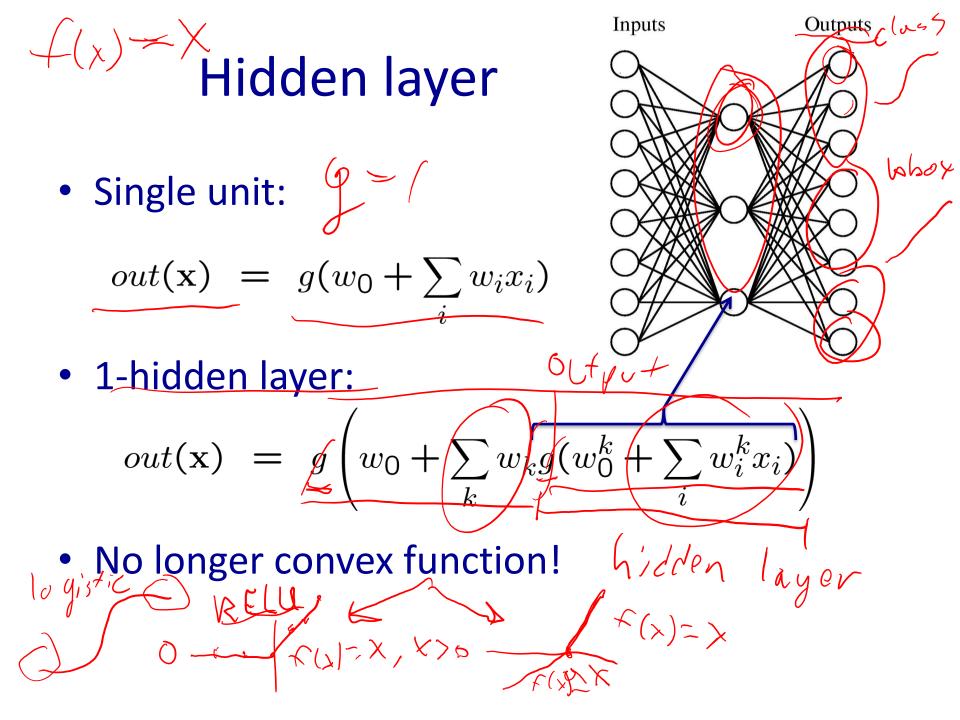
 $\sum_{i=0}^{n} w_i x_i$

- Can learn $x_1 \vee x_2$? $x_1 \vee x_2$
 - $-0.5 + x_1 + x_2$
- Can learn $x_1 \wedge x_2$? • -1.5 + $x_1 + x_2$
- Can learn any conjunction or disjunction?
 - $0.5 + x_1 + ... + x_n$
 - (-n+0.5) + x_1 + ... + x_n
- Can learn majority?
 - $(-0.5*n) + x_1 + ... + x_n$
- What are we missing? The dreaded XOR!, etc.

Going beyond linear classification
Solving the XOR problem

$$y = x_1 XOR x_2 = (x_1 \land \neg x_2) \lor (x_2 \land \neg x_1)$$

 $v_1 = (x_1 \land \neg x_2)$
 $= -1.5 + 2x_1 \neg x_2$
 $v_2 = (x_2 \land \neg x_1)$
 $= -1.5 + 2x_2 \neg x_1$
 $y = v_1 \lor v_2$
 $= -0.5 + v_1 + v_2$
 $v_2 = (x_2 \land \neg x_1)$



Inputs Outputs

Example data for NN with hidden layer

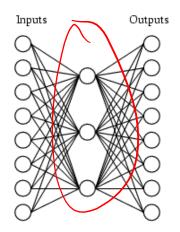
A target function:

Input	Output
$10000000 \rightarrow$	10000000
$01000000 \rightarrow$	01000000
$00100000 \rightarrow$	00100000
$00010000 \rightarrow$	00010000
$00001000 \rightarrow$	00001000
$00000100 \rightarrow$	00000100
$00000010 \rightarrow$	00000010
$00000001 \rightarrow$	00000001

Can this be learned??

A network:

Learned weights for hidden layer



Learned hidden layer representation:

Input		Hidden			Output		
Values							
1000000	\rightarrow	.89	.04	.08	\rightarrow	10000000	
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000	
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000	
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000	
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000	
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100	
00000010	\rightarrow	.80	.01	.98	\rightarrow	0000010	
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001	

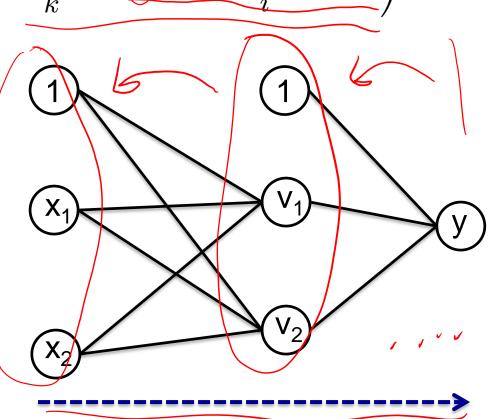
Forward propagation

1-hidden layer:

$$\underbrace{out(\mathbf{x})}_{i} = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Compute values left to right

- 1. Inputs: x₁, ..., x_n
- 2. Hidden: v₁,..., v_n
- 3. Output: y



Forward propagation

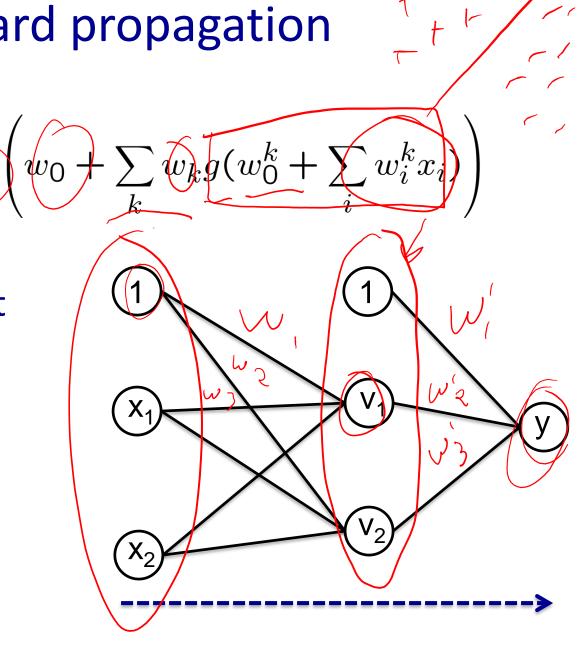
1-hidden layer:

Compute values left to right

 $out(\mathbf{x})$

(g)

- Inputs: x₁, ..., x_n 1.
- Hidden: v₁,..., v_n 2.
- Output: y 3.



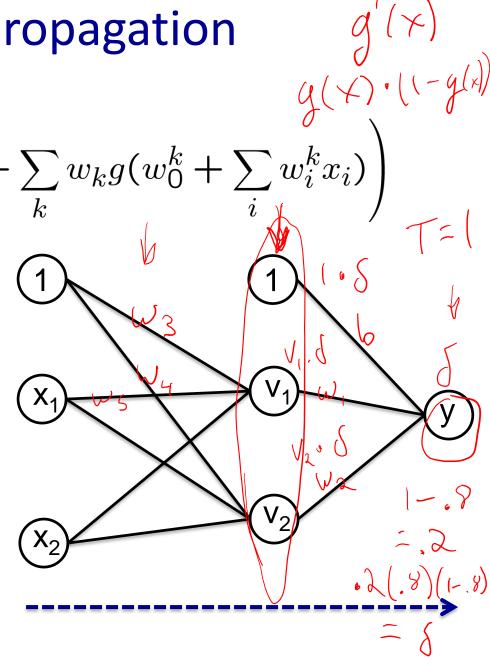
Forward propagation

1-hidden layer:

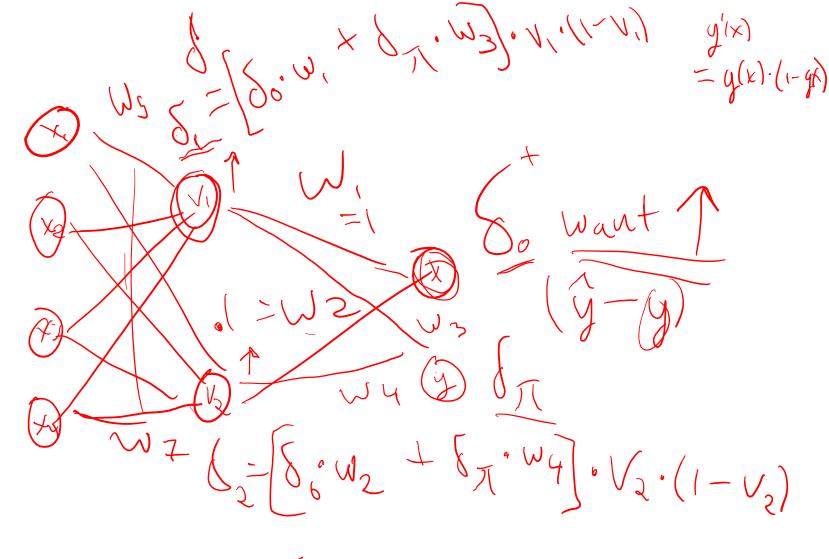
$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Compute values left to right

- 1. Inputs: x₁, ..., x_n
- 2. Hidden: v₁,..., v_n
- 3. Output: y $b=b+p\cdot l\cdot \delta \varepsilon$ $w_{i}=w_{i}+p\cdot v_{i}\cdot \delta \varepsilon$



$g(x) \cdot (1 - g(x))$ Forward propagation 1-hidden layer: $out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$ **Compute values left** to right Inputs: x₁, ..., x_n 1. 2. Hidden: v₁,..., v_n 3. Output: y $b=b+p\cdot l\cdot \delta \epsilon$ $w_{i}=w_{i}+p\cdot v_{i}\cdot \delta \epsilon$

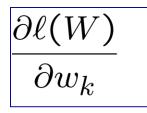


 $= W_{z} +$ * × 4 \bigcup * 2

Gradient descent for 1hidden layer

 $\ell(W) = \frac{1}{2} \sum_{j} [y^j - out(\mathbf{x}^j)]^2$

 $out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'}x_{i'})\right)$



Dropped w₀ to make derivation simpler

$$v_k^j = g\left(\sum_{i'} w_{i'}^{k'} x_{i'}\right)$$

$$\frac{\partial \ell(W)}{\partial w_k} = \sum_{j=1}^m -[y^j - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_k}$$

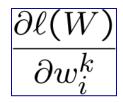
$$out(x) = g\left(\sum_{k'} w_{k'} v_k^j\right) \qquad \frac{\partial out(\mathbf{x})}{\partial w_k} = v_k^j g'\left(\sum_{k'} w_{k'} v_k^j\right)$$

Gradient for last layer same as the single node

case, but with hidden nodes v as input!

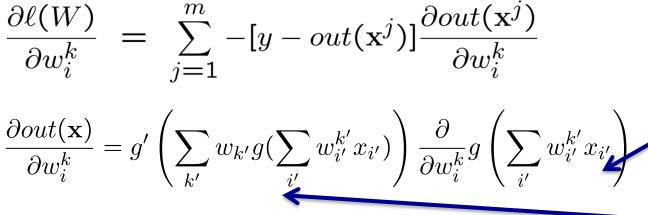
Gradient descent for 1-hidden layer

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$
$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'}x_{i'})\right)$$



Dropped w₀ to make derivation simpler

$$\frac{\partial}{\partial x}f(g(x)) = f'(g(x))g'(x)$$



For hidden layer, two parts:

- Normal update for single neuron
- Recursive computation of gradient on output layer

Multilayer neural networks

Inputs Outputs Forward

Gradient

Inference and Learning:

- Forward pass: left to right, each hidden layer in turn
- Gradient computation: right to left, propagating gradient for each node

Forward propagation – prediction

- Recursive algorithm
- Start from input layer
- Output of node V_k with parents $U_1, U_2, ...$:

$$V_k = g\left(\sum_i w_i^k U_i\right)$$

Back-propagation – learning

- Just gradient descent!!!
- Recursive algorithm for computing gradient
- For each example
 - Perform forward propagation
 - Start from output layer
 - Compute gradient of node V_k with parents $U_1, U_2, ...$
 - Update weight w_i^k
 - Repeat (move to preceding layer)

Back-propagation – pseudocode

Initialize all weights to small random numbers

- Until convergence, do:
 - For each training example x,y:
 - 1. Forward propagation, compute node values V_k
 - 2. For each output unit o (with labeled output y):

$$\delta_{\rm o} = V_{\rm o}(1\text{-}V_{\rm o})(\text{y-}V_{\rm o})$$

3. For each hidden unit h:

$$\delta_h = V_h (1 - V_h) \Sigma_{k \text{ in output}(h)} W_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$ from node i to node j

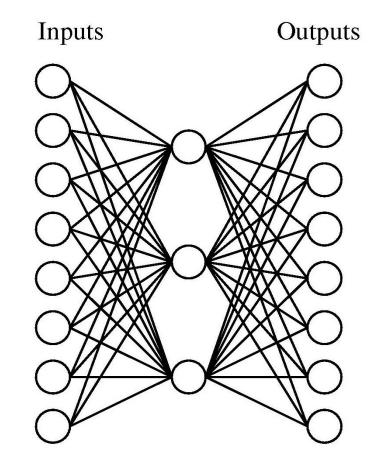
$$W_{i,j} = W_{i,j} + \eta \delta_j x_{i,j}$$

Convergence of backprop

- Perceptron leads to convex optimization
 - Gradient descent reaches global minima
- Multilayer neural nets **not convex**
 - Gradient descent gets stuck in local minima
 - Selecting number of hidden units and layers = fuzzy process
 - NNs have made a HUGE comeback in the last few years!!!
 - Neural nets are back with a new name!!!!
 - Deep belief networks
 - Huge error reduction when trained with lots of data on GPUs

Overfitting in NNs

- Are NNs likely to overfit?
 - Yes, they can represent arbitrary functions!!!
- Avoiding overfitting?
 - More training data
 - Fewer hidden nodes / better topology
 - Regularization
 - Early stopping



Object Recognition

stone wall [0.95, web]

judo [0.96, web]

tractor [0.91, web]

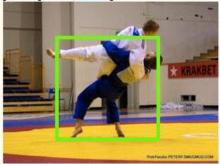
dishwasher [0.91, web]

judo [0.92, <u>web</u>]

tractor [0.91, web]

car show [0.99, web]

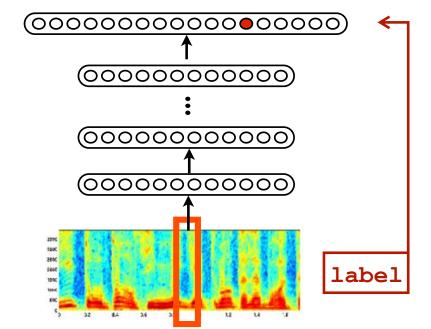
judo [0.91, web]



tractor [0.94, web]

Number Detection

Acoustic Modeling for Speech Recognition

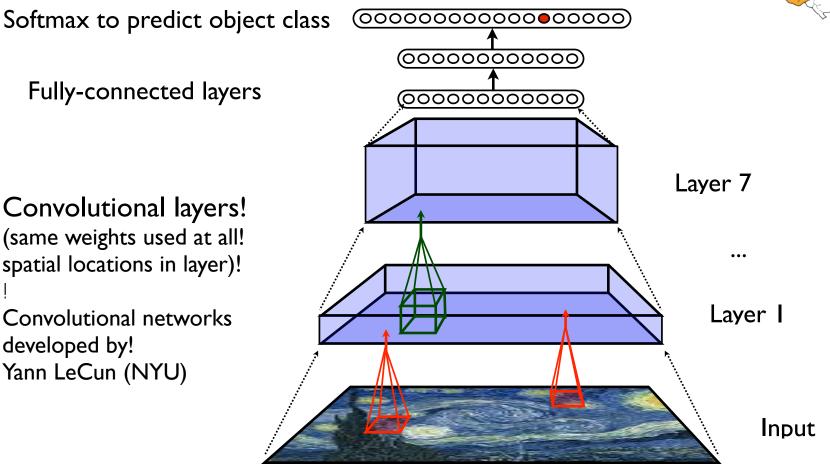


Close collaboration with Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English! ("biggest single improvement in 20 years of speech research") Launched in 2012 at time of Jellybean release of Android

2012-era Convolutional Model for Object Recognition

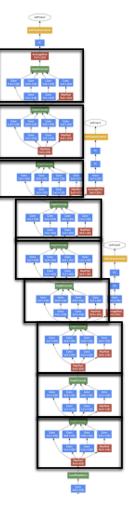


Basic architecture developed by Krizhevsky, Sutskever & Hinton (all now at Google).! Won 2012 ImageNet challenge with 16.4% top-5 error rate

2014-era Model for Object Recognition

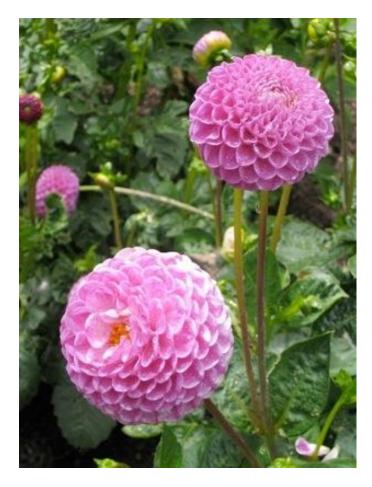
Module with 6 separate! convolutional layers

24 layers deep!



Developed by team of Google Researchers:! Won 2014 ImageNet challenge with 6.66% top-5 error rate

Good Fine-grained Classification



"hibiscus"

"dahlia" Slides from Jeff Dean at Google

Good Generalization

Both recognized as a "meal"

Sensible Errors

"snake"

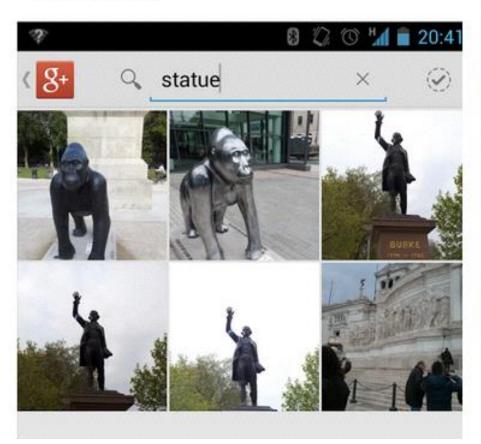
"dog"

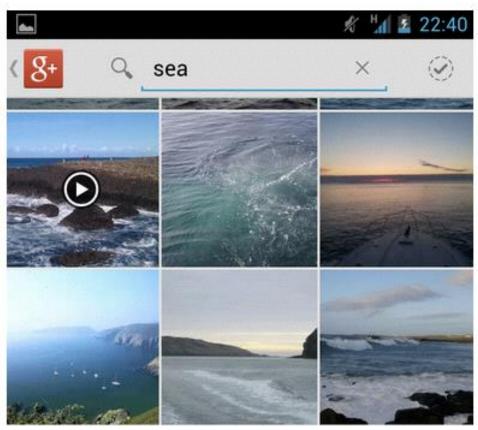
Works in practice for real users.

Wow.

The new Google plus photo search is a bit insane.

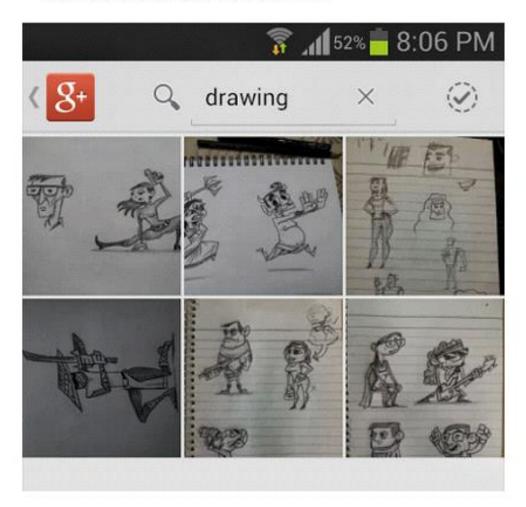
I didn't tag those ... :)

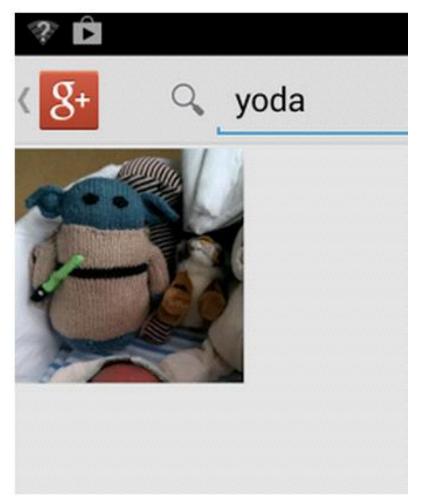




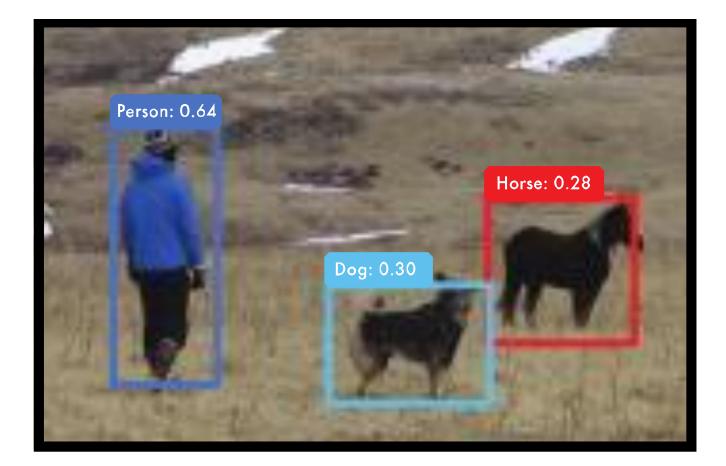
Works in practice for real users.

Google Plus photo search is awesome. Searched with keyword 'Drawing' to find all my scribbles at once :D

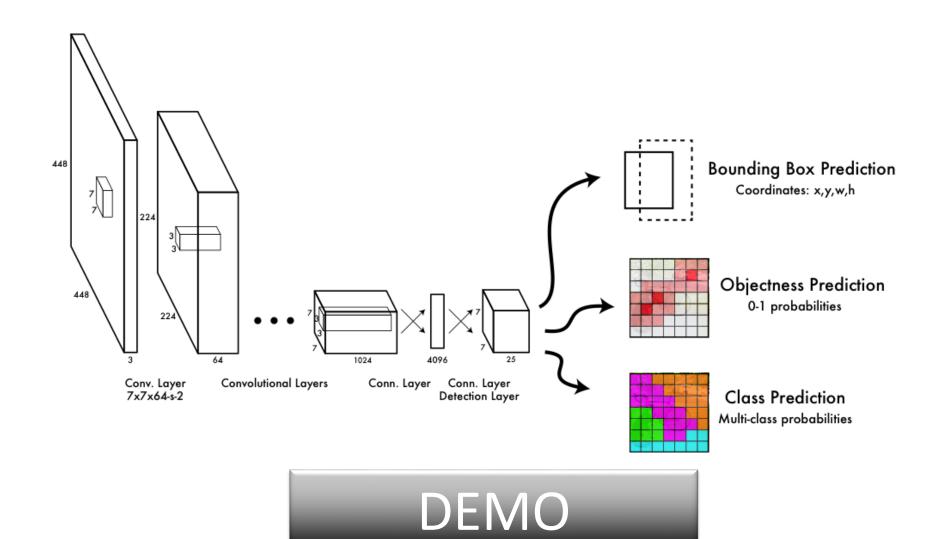




Object Detection



YOLO



What you need to know about neural networks

• Perceptron:

- Relationship to general neurons

• Multilayer neural nets

- Representation
- Derivation of backprop
- Learning rule
- Overfitting