
CSE446: Clustering and EM
Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer

Clustering

• Clustering systems:

– Unsupervised learning

– Detect patterns in unlabeled

data

• E.g. group emails or search

results

• E.g. find categories of customers

• E.g. detect anomalous program

executions

– Useful when don’t know what

you’re looking for

– Requires data, but no labels

– Often get gibberish

Clustering
• Basic idea: group together similar instances

• Example: 2D point patterns

• What could “similar” mean?
– One option: small (squared) Euclidean distance

K-Means

• An iterative clustering
algorithm
– Pick K random points

as cluster centers
(means), c1…ck

– Alternate:
• Assign each example xi

to the mean cj that is
closest to it

• Set each mean cj to the
average of its assigned
points

– Stop when no points’
assignments change

K-Means Example

Example: K-Means for Segmentation

Original image

K-Means
• Data: {xj | j=1..n}

• An iterative clustering algorithm

– Pick K random cluster centers, c1…ck

– For t=1..T: [or, stop if assignments don’t change]

• for j = 1.. n: [recompute cluster assignments]

• for j= 1…k: [recompute cluster centers]

x2

x1

x1 x2

-1 0

0 0

2 2

Random cluster means:
• c1=[-1,0], c2=[0,0]
t=0:

• a1 = argmini dist(x1,ci) = 1
• a2 = argmini dist(x2,ci) = 2
• a3 = argmini dist(x3,ci) = 2
• c1 = (1/1) * [-1,0] = [-1,0]
• c2 = (1/2) * ([0,0]+[2,2]) = [1,1]
t=1:

• a1 = argmini dist(x1,ci) = 1

• a2 = argmini dist(x2,ci) = 1

• a3 = argmini dist(x3,ci) = 2

• c1 = (1/2) * ([-1,0]+[0,0]) = [-0.5,0]

• c2 = (1/1) * ([2,2]) = [2,1]

t=2:

• Stop!! (cluster assignments ai won’t

change in next round; you can verify!)

Pick K random cluster centers, c1…ck

For t=1..T:
• for j = 1.. n: [recompute assignments]

• for j= 1…k: [recompute cluster centers]

d(xj,ci) x1 x2 x3

c1 0 1 13

c2 1 0 8

d(xj,ci) x1 x2 x3

c1 0 1 13

c2 4 4 18

K-Means as Optimization
• Consider the total distance to the means:

• Two stages each iteration:
– Update assignments: fix means c,

change assignments a

– Update means: fix assignments a,

change means c

• Coordinate gradient descent on L

• Will it converge?
– Yes!, if you can argue that each update can’t increase L

points
assignments

means

Phase I: Update Assignments

• For each point, re-assign to

closest mean:

• Can only decrease total

distance L!

Phase II: Update Means

• Move each mean to the average of
its assigned points:

• Also can only decrease total
distance… (Why?)

• Fun fact: the point y with minimum
squared Euclidean distance to a
set of points {x} is their mean

Initialization

• K-means is non-deterministic

– Requires initial means

– It does matter what you pick!

– What can go wrong?

– Various schemes for preventing

this kind of thing: variance-

based split / merge, initialization

heuristics

K-Means Getting Stuck

• A local optimum:

Why doesn’t this work out like

the earlier example, with the

purple taking over half the blue?

K-Means Questions

• Will K-means converge?
– To a global optimum?

• Will it always find the true patterns in the data?
– If the patterns are very very clear?

• Will it find something interesting?

• Do people ever use it?

• How many clusters to pick?

Agglomerative Clustering

• Agglomerative clustering:
– First merge very similar instances

– Incrementally build larger clusters out of
smaller clusters

• Algorithm:
– Maintain a set of clusters

– Initially, each instance in its own cluster

– Repeat:
• Pick the two closest clusters

• Merge them into a new cluster

• Stop when there’s only one cluster left

• Produces not one clustering, but a family
of clusterings represented by a
dendrogram

Agglomerative Clustering

• How should we define
“closest” for clusters with
multiple elements?

• Many options:
– Closest pair (single-link

clustering)

– Farthest pair (complete-link
clustering)

– Average of all pairs

– Ward’s method (min variance,
like k-means)

• Different choices create
different clustering behaviors

Agglomerative Clustering Questions

• Will agglomerative clustering converge?
– To a global optimum?

• Will it always find the true patterns in the data?
– If the patterns are very very clear?

• Will it find something interesting?

• Do people ever use it?

• How many clusters to pick?

(One) bad case for “hard
assignments”?

• Clusters may overlap

• Some clusters may be
“wider” than others

• Distances can be
deceiving!

Probabilistic Clustering

• We can use a
probabilistic model!
• allows overlaps, clusters of

different size, etc.

• Can tell a generative
story for data
– P(X|Y) P(Y) is common

• Challenge: we need to
estimate model
parameters without
labeled Ys

Y X1 X2

?? 0.1 2.1

?? 0.5 -1.1

?? 0.0 3.0

?? -0.1 -2.0

?? 0.2 1.5

… … …

What Model Should We Use?

• Depends on X!

• Here, maybe Gaussian
Naïve Bayes?
– Multinomial over

clusters Y, Gaussian
over each Xi given Y

Y X1 X2

?? 0.1 2.1

?? 0.5 -1.1

?? 0.0 3.0

?? -0.1 -2.0

?? 0.2 1.5

… … …

Could we make fewer
assumptions?

• What if the input dimensions Xi co-vary?
• Gaussian Mixture Models!

– Assume m-dimensional data points
– P(Y) still multinomial, with k classes

– P(X|Y=i), i=1..k are k multivariate Gaussians

• mean μi is m-dimensional vector

• variance Σi is m by m matrix

• |x| is the determinate of matrix x

The General GMM assumption

m1

m3

• P(Y): There are k components

• P(X|Y): Each component
generates data from a
Gaussian with mean μi and
covariance matrix Si

Each data point is sampled from a
generative process:

1. Pick a component at
random: Choose
component i with
probability P(y=i)

2. Datapoint ~ N(μi, Si)

m2

Detour/Review: Supervised MLE for GMM

• How do we estimate parameters for Gaussian
Mixtures with fully supervised data?

• Have to define objective and solve optimization
problem.

• For example, MLE estimate has closed form solution:

That was easy! Now, lets estimate
parameters!

• MLE:

– argmaxθ j P(yj,xj;θ)

– θ: all model parameters
• eg, class probs, means, and

variance for naïve Bayes

• But we don’t know yj!!!

• Maximize marginal likelihood:

– argmaxθ j P(xj;θ) = argmax j i=1
k P(yj=i,xj;θ)

How do we optimize?
Closed Form?

• Maximize marginal likelihood:

– argmaxθ j P(xj;θ) = argmax j i=1
k P(yj=i,xj;θ)

• Almost always a hard problem!

– Usually no closed form solution

– Even when P(X,Y;θ) is convex, P(X;θ) generally
isn’t…

– For all but the simplest P(X;θ), we will have to do
gradient ascent, in a big messy space with lots of
local optimum…

Simple example: learn means only!

Consider:

• 1D data, m points

• Mixture of k=2 Gaussians

• Variances fixed to σ=1

• Dist’n over classes is uniform

• Need to estimate μ1 and μ2 .01 .03 .05 .07 .09

Learning general mixtures of Gaussian

• Marginal likelihood, for data {xj | j = 1..n}:

• Need to differentiate and solve for μi, Σi, and P(Y=i) for i=1..k

• There will be no closed for solution, gradient is complex, lots of
local optimum

• Wouldn’t it be nice if there was a better way!

Expectation
Maximization

The EM Algorithm

• A clever method for maximizing marginal
likelihood:
– argmaxθ j P(xj) = argmaxθ j i=1

k P(yj=i,xj)

– A type of gradient ascent that can be easy to
implement (eg, no line search, learning rates, etc.)

• Alternate between two steps:
– Compute an expectation

– Compute a maximization

• Not magic: still optimizing a non-convex
function with lots of local optima
– The computations are just easier (often, significantly so!)

EM: Two Easy Steps

Objective: argmaxθ j i=1
k P(yj=i,xj|θ) = j log i=1

k P(yj=i,xj|θ)

Data: {xj | j=1 .. n}

• E-step: Compute expectations to “fill in” missing y values
according to current parameters

– For all examples j and values i for y, compute: P(yj=i | xj
, θ)

• M-step: Re-estimate the parameters with “weighted” MLE
estimates

– Set θ = argmaxθ j i=1
k P(yj=i | xj

, θ) log P(yj=i,xj|θ)

Especially useful when the E and M steps have closed form solutions!!!

Simple example: learn means only!

Consider:

• 1D data, m points

• Mixture of k=2 Gaussians

• Variances fixed to σ=1

• Dist’n over classes is uniform

• Need to estimate μ1 and μ2 .01 .03 .05 .07 .09

EM for GMMs: only learning means
Iterate: On the t’th iteration let our estimates be

θt = { μ1
(t), μ2

(t) … μk
(t) }

E-step

Compute “expected” classes of all datapoints

M-step

Compute most likely new μs given class expectations, by doing

weighted ML estimates:

x1

x1

-1

0

2

Initialization, random means and σ=1:
• μ1=-1, μ2=0
t=0:
• P(y=1|x1) α exp(-0.5×(-1+1)2) = 1
• P(y=2|x1) α exp(-0.5×(-1-0)2) = 0.6

• P(y=1|x1) = 0.63, P(y=2|x1)=0.37
• P(y=1|x2) α exp(-0.5×(0+1)2) = 0.6
• P(y=2|x2) α exp(-0.5×(0-0)2) = 1

• P(y=1|x2) = 0.37, P(y=2|x2)=0.63
• P(y=1|x3) α exp(-0.5×(2+1)2) = 0.07
• P(y=2|x3) α exp(-0.5×(2-0)2) = 0.93

• P(y=1|x3) = 0.01, P(y=2|x3)=0.93
• μ1 = (0.63×-1+ 0.37×0 + 0.07×2) / (0.63 +

0.37 + 0.07) = -0.45
• μ2 = (0.37×-1+ 0.67×0 + 0.93×2) /

(0.37+0.67+0.93)=0.75
t=1:
• learning continues, when do we stop?

Pick K random cluster centers, μ1…μk
For t=1..T:
• E step:

• M step:

E.M. for General GMMs
Iterate: On the t’th iteration let our estimates be, for y with k classes

θt = { μ1 … μk, S1 … Sk,p1,…,pk}

E-step

Compute “expected” classes of all datapoints for each class

M-step

Compute weighted MLE for μ and Σ given expected classes above

Evaluate a

Gaussian

at xj

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting
Density

Estimator

Three
classes of

assay
(each learned with

it’s own mixture
model)

What if we do hard assignments, and learn means only?

E-step / Compute cluster assignment

Compute “expected” classes  set most likely class

M-step / Recompute cluster mean

Compute most likely new μs  averages over hard assignments

With hard assignments and unit variance, EM is

equivalent to k-means clustering algorithm!!!

What you should know

• K-means for clustering:

– algorithm

– converges because it’s coordinate ascent

• Know what agglomerative clustering is

• EM for mixture of Gaussians:

– How to “learn” maximum likelihood parameters (locally max. like.) in the
case of unlabeled data

• Be happy with this kind of probabilistic analysis

• Remember, E.M. can get stuck in local minima, and empirically it
DOES

• EM is coordinate ascent

• General case for EM

Acknowledgements

• K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:
– http://www.autonlab.org/tutorials/

• K-means Applet:
– http://www.elet.polimi.it/upload/matteucc/Clustering

/tutorial_html/AppletKM.html

• Gaussian mixture models Applet:
– http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM

.html

http://www.autonlab.org/tutorials/
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html

