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Clustering

• Clustering systems:

– Unsupervised learning

– Detect patterns in unlabeled 

data

• E.g. group emails or search 

results

• E.g. find categories of customers

• E.g. detect anomalous program 

executions

– Useful when don’t know what 

you’re looking for

– Requires data, but no labels

– Often get gibberish



Clustering
• Basic idea: group together similar instances

• Example: 2D point patterns

• What could “similar” mean?
– One option: small (squared) Euclidean distance





K-Means

• An iterative clustering 
algorithm
– Pick K random points 

as cluster centers 
(means), c1…ck

– Alternate:
• Assign each example xi

to the mean cj that is 
closest to it

• Set each mean cj to the 
average of its assigned 
points

– Stop when no points’
assignments change



K-Means Example



Example: K-Means for Segmentation

Original image



K-Means
• Data: {xj | j=1..n}

• An iterative clustering algorithm

– Pick K random cluster centers, c1…ck

– For t=1..T: [or, stop if assignments don’t change]

• for j = 1.. n: [recompute cluster assignments]

• for j= 1…k: [recompute cluster centers]
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Random cluster means:
• c1=[-1,0], c2=[0,0]
t=0:

• a1 = argmini dist(x1,ci) = 1
• a2 = argmini dist(x2,ci) = 2
• a3 = argmini dist(x3,ci) = 2
• c1 = (1/1) * [-1,0] = [-1,0]
• c2 = (1/2) * ([0,0]+[2,2]) = [1,1]
t=1:

• a1 = argmini dist(x1,ci) = 1

• a2 = argmini dist(x2,ci) = 1

• a3 = argmini dist(x3,ci) = 2

• c1 = (1/2) * ([-1,0]+[0,0]) = [-0.5,0]

• c2 = (1/1) * ([2,2]) = [2,1]

t=2:

• Stop!! (cluster assignments ai won’t 

change in next round; you can verify!)

Pick K random cluster centers, c1…ck

For t=1..T: 
• for j = 1.. n: [recompute assignments]

• for j= 1…k: [recompute cluster centers]

d(xj,ci) x1 x2 x3

c1 0 1 13

c2 1 0 8

d(xj,ci) x1 x2 x3

c1 0 1 13

c2 4 4 18



K-Means as Optimization
• Consider the total distance to the means:

• Two stages each iteration:
– Update assignments: fix means c,

change assignments a

– Update means: fix assignments a,

change means c

• Coordinate gradient descent on L

• Will it converge?
– Yes!, if you can argue that each update can’t increase L

points
assignments

means



Phase I: Update Assignments

• For each point, re-assign to 

closest mean:

• Can only decrease total 

distance L!



Phase II: Update Means

• Move each mean to the average of 
its assigned points:

• Also can only decrease total 
distance… (Why?)

• Fun fact: the point y with minimum 
squared Euclidean distance to a 
set of points {x} is their mean



Initialization

• K-means is non-deterministic

– Requires initial means

– It does matter what you pick!

– What can go wrong?

– Various schemes for preventing 

this kind of thing: variance-

based split / merge, initialization 

heuristics



K-Means Getting Stuck

• A local optimum:

Why doesn’t this work out like 

the earlier example, with the 

purple taking over half the blue?



K-Means Questions

• Will K-means converge?
– To a global optimum?

• Will it always find the true patterns in the data?
– If the patterns are very very clear?

• Will it find something interesting?

• Do people ever use it?

• How many clusters to pick?



Agglomerative Clustering

• Agglomerative clustering:
– First merge very similar instances

– Incrementally build larger clusters out of 
smaller clusters

• Algorithm:
– Maintain a set of clusters

– Initially, each instance in its own cluster

– Repeat:
• Pick the two closest clusters

• Merge them into a new cluster

• Stop when there’s only one cluster left

• Produces not one clustering, but a family 
of clusterings represented by a 
dendrogram



Agglomerative Clustering

• How should we define 
“closest” for clusters with 
multiple elements?

• Many options:
– Closest pair (single-link 

clustering)

– Farthest pair (complete-link 
clustering)

– Average of all pairs

– Ward’s method (min variance, 
like k-means)

• Different choices create 
different clustering behaviors



Agglomerative Clustering Questions

• Will agglomerative clustering converge?
– To a global optimum?

• Will it always find the true patterns in the data?
– If the patterns are very very clear?

• Will it find something interesting?

• Do people ever use it?

• How many clusters to pick?



(One) bad case for “hard 
assignments”?

• Clusters may overlap

• Some clusters may be 
“wider” than others

• Distances can be 
deceiving!



Probabilistic Clustering

• We can use a 
probabilistic model!
• allows overlaps, clusters of 

different size, etc.

• Can tell a generative 
story for data
– P(X|Y) P(Y) is common

• Challenge: we need to 
estimate model 
parameters without 
labeled Ys

Y X1 X2

?? 0.1 2.1

?? 0.5 -1.1

?? 0.0 3.0

?? -0.1 -2.0

?? 0.2 1.5

… … …



What Model Should We Use?

• Depends on X!

• Here, maybe Gaussian 
Naïve Bayes?
– Multinomial over 

clusters Y, Gaussian 
over each Xi given Y

Y X1 X2

?? 0.1 2.1

?? 0.5 -1.1

?? 0.0 3.0

?? -0.1 -2.0

?? 0.2 1.5

… … …



Could we make fewer 
assumptions?

• What if the input dimensions Xi co-vary? 
• Gaussian Mixture Models!

– Assume m-dimensional data points 
– P(Y) still multinomial, with k classes

– P(X|Y=i), i=1..k  are k multivariate Gaussians 

• mean μi is m-dimensional vector

• variance Σi is m by m matrix

• |x| is the determinate of matrix x



The General GMM assumption

m1

m3

• P(Y): There are k components

• P(X|Y): Each component 
generates data from a 
Gaussian with mean μi and 
covariance matrix Si

Each data point is sampled from a 
generative process: 

1. Pick a component at 
random: Choose 
component i with 
probability P(y=i)

2. Datapoint ~ N(μi, Si )

m2



Detour/Review: Supervised MLE for GMM

• How do we estimate parameters for Gaussian 
Mixtures with fully supervised data?

• Have to define objective and solve optimization 
problem.

• For example, MLE estimate has closed form solution:



That was easy! Now, lets estimate 
parameters!

• MLE:

– argmaxθ j P(yj,xj;θ)

– θ: all model parameters 
• eg, class probs, means, and 

variance for naïve Bayes

• But we don’t know yj!!!

• Maximize marginal likelihood:

– argmaxθ j P(xj;θ) = argmax j i=1
k P(yj=i,xj;θ)



How do we optimize? 
Closed Form?

• Maximize marginal likelihood:

– argmaxθ j P(xj;θ) = argmax j i=1
k P(yj=i,xj;θ)

• Almost always a hard problem!

– Usually no closed form solution

– Even when P(X,Y;θ) is convex, P(X;θ) generally 
isn’t…

– For all but the simplest P(X;θ), we will have to do 
gradient ascent, in a big messy space with lots of 
local optimum…



Simple example: learn means only!

Consider:

• 1D data, m points

• Mixture of k=2 Gaussians

• Variances fixed to σ=1

• Dist’n over classes is uniform

• Need to estimate μ1 and μ2 .01     .03     .05     .07     .09



Learning general mixtures of Gaussian

• Marginal likelihood, for data {xj | j = 1..n}:

• Need to differentiate and solve for μi, Σi, and P(Y=i) for i=1..k

• There will be no closed for solution, gradient is complex, lots of 
local optimum

• Wouldn’t it be nice if there was a better way!



Expectation 
Maximization



The EM Algorithm

• A clever method for maximizing marginal 
likelihood:
– argmaxθ j P(xj) = argmaxθ j i=1

k P(yj=i,xj)

– A type of gradient ascent that can be easy to 
implement (eg, no line search, learning rates, etc.)

• Alternate between two steps:
– Compute an expectation

– Compute a maximization

• Not magic: still optimizing a non-convex 
function with lots of local optima
– The computations are just easier (often, significantly so!)



EM: Two Easy Steps

Objective: argmaxθ j i=1
k P(yj=i,xj|θ) = j log i=1

k P(yj=i,xj|θ) 

Data: {xj | j=1 .. n} 

• E-step: Compute expectations to “fill in” missing y values 
according to current parameters 

– For all examples j and values i for y, compute: P(yj=i | xj
, θ) 

• M-step: Re-estimate the parameters with “weighted” MLE 
estimates

– Set θ = argmaxθ j i=1
k P(yj=i | xj

, θ) log P(yj=i,xj|θ)

Especially useful when the E and M steps have closed form solutions!!!



Simple example: learn means only!

Consider:

• 1D data, m points

• Mixture of k=2 Gaussians

• Variances fixed to σ=1

• Dist’n over classes is uniform

• Need to estimate μ1 and μ2 .01     .03     .05     .07     .09



EM for GMMs: only learning means
Iterate:  On the t’th iteration let our estimates be

θt = { μ1
(t), μ2

(t) … μk
(t) }

E-step

Compute “expected” classes of all datapoints

M-step

Compute most likely new μs given class expectations, by doing 

weighted ML estimates:



x1

x1

-1

0

2

Initialization, random means and σ=1:
• μ1=-1, μ2=0
t=0:
• P(y=1|x1) α exp(-0.5×(-1+1)2) = 1 
• P(y=2|x1) α exp(-0.5×(-1-0)2) =  0.6

• P(y=1|x1) = 0.63, P(y=2|x1)=0.37
• P(y=1|x2) α exp(-0.5×(0+1)2) = 0.6 
• P(y=2|x2) α exp(-0.5×(0-0)2) = 1

• P(y=1|x2) = 0.37, P(y=2|x2)=0.63
• P(y=1|x3) α exp(-0.5×(2+1)2) =  0.07
• P(y=2|x3) α exp(-0.5×(2-0)2) = 0.93

• P(y=1|x3) = 0.01, P(y=2|x3)=0.93
• μ1 = (0.63×-1+ 0.37×0 + 0.07×2 ) / (0.63 + 

0.37 + 0.07 ) = -0.45
• μ2 = (0.37×-1+ 0.67×0 + 0.93×2 ) / 

(0.37+0.67+0.93)=0.75
t=1:
• learning continues, when do we stop?

Pick K random cluster centers, μ1…μk
For t=1..T: 
• E step:

• M step:



E.M. for General GMMs
Iterate:  On the t’th iteration let our estimates be, for y with k classes

θt = { μ1 … μk, S1 … Sk,p1,…,pk}

E-step

Compute “expected” classes of all datapoints for each class

M-step  

Compute weighted MLE for μ and Σ given expected classes above

Evaluate a 

Gaussian 

at xj



Gaussian Mixture Example: Start



After first iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



Some Bio Assay data



GMM clustering of the assay data



Resulting 
Density 

Estimator



Three 
classes of 

assay
(each learned with 

it’s own mixture 
model)



What if we do hard assignments, and learn means only?

E-step / Compute cluster assignment

Compute “expected” classes  set most likely class

M-step / Recompute cluster mean

Compute most likely new μs  averages over hard assignments

With hard assignments and unit variance, EM is 

equivalent to k-means clustering algorithm!!!



What you should know

• K-means for clustering:

– algorithm

– converges because it’s coordinate ascent

• Know what agglomerative clustering is

• EM for mixture of Gaussians:

– How to “learn” maximum likelihood parameters (locally max. like.) in the 
case of unlabeled data

• Be happy with this kind of probabilistic analysis

• Remember, E.M. can get stuck in local minima, and empirically it 
DOES

• EM is coordinate ascent

• General case for EM
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