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Administrivia

No office hour for me on Wednesday this week (today is as usual).
No office hour for Kousuke on Tuesday.

Please take the anonymous “quiz” on Canvas to give feedback to Swabha!
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Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

(Where did N go?)
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Finding the Maximum-Variance Direction

argmax
u

N∑
n=1

(xn · u)2

s.t. ‖u‖22 = 1

(If we didn’t constrain u to have length 1, it could increase the objective arbitrarily in
a way that has nothing to do with variance in the data!)

If we let X =


x>1
x>2

...
x>N

, then we want: argmax
u

‖Xu‖22, s.t. ‖u‖22 = 1.
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Constrained Optimization

The blue lines represent isobars: all points
on a blue line have the same objective
function value.
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Constrained Optimization

The blue lines represent isobars: all points
on a blue line have the same objective
function value.
The red circle is all points with a norm of
1. It represents a constraint like the one we
have in the maximum-variance projection
problem.

17 / 37



Deriving the Solution
Don’t panic.

argmax
u

‖Xu‖22, s.t. ‖u‖22 = 1

I The Lagrangian encoding of the problem moves the constraint into the objective:

max
u

min
λ
‖Xu‖22 − λ(‖u‖22 − 1) ⇒ min

λ
max
u
‖Xu‖22 − λ(‖u‖22 − 1)

I Gradient (first derivatives with respect to u): 2X>Xu− 2λu

I Setting equal to 0 leads to: λu = X>Xu

I You may recognize this as the definition of an eigenvector (u) and eigenvalue (λ)
for the matrix X>X.

I We take the first (largest) eigenvalue.
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Projecting into Multiple Dimensions

So far, we’ve projected each xn into one dimension.

To get a second projection v, we solve the same problem again, but this time with
another constraint:

argmax
v

‖Xv‖22, s.t. ‖v‖22 = 1 and u · v = 0

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, we can show that the solution will be the
second eigenvector.
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“Eigenfaces”
Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition
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Principal Components Analysis

Data: unlabeled data with mean 0, X = [x1|x2| · · · |xN ]>, and dimensionality K < d
Result: K-dimensional projection of X
let 〈λ1, . . . , λK〉 be the top K eigenvalues of X>X

and 〈u1, . . . ,uK〉 be the corresponding eigenvectors;
let U = [u1|u2| · · · |uK ];
return XU;

Algorithm 1: PCA
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Principal Components Analysis

Data: unlabeled data with mean 0, X = [x1|x2| · · · |xN ]>, and dimensionality K < d
Result: K-dimensional projection of X
let 〈λ1, . . . , λK〉 be the top K eigenvalues of X>X

and 〈u1, . . . ,uK〉 be the corresponding eigenvectors;
let U = [u1|u2| · · · |uK ];
return XU;

Algorithm 2: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a
matrix.
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Alternate View of PCA

Think of pn = xnU as a new, K-dimensional representation of xn.

This means that pnU
> ≈ xn. The closer these vectors are, the lower our

reconstruction error, ‖xn − pnU
>‖22.

We could have derived PCA by saying that our goal is to minimize the total
reconstruction error on the data:

min
U

∥∥∥X−XUU>
∥∥∥2
2

s.t. U>U = 1
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Choosing K (Hyperparameter Tuning)

To select K for PCA, you can use the same criteria we discussed for K-Means (BIC
and AIC).
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PCA and Clustering

There’s a unified view of both PCA and clustering.

I K-Means chooses cluster-means so that squared distances to data are small.

I PCA chooses projections so that reconstruction error of data is small.

Both are trying to find a “simple” way to summarize the data; fewer points, or fewer
dimensions.

Both could be used to create new features for supervised learning!
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