Machine Learning (CSE 446): Unsupervised Learning

Swabha Swayamdipta & Noah Smith © 2017

University of Washington nasmith@cs.washington.edu

October 13, 2017

< □ > < □ > < □ > < Ξ > < Ξ > Ξ
 < ○ Q <
 1/45

Unsupervised Learning

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

Unsupervised Learning

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

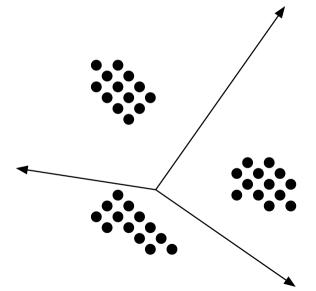
There might, or might not, be a test set with correct classes y.

Unsupervised Learning

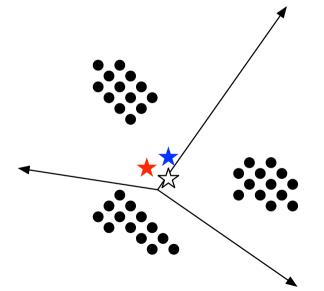
The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

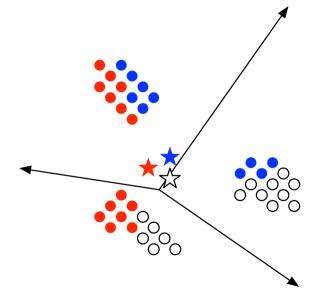


<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 5 / 45



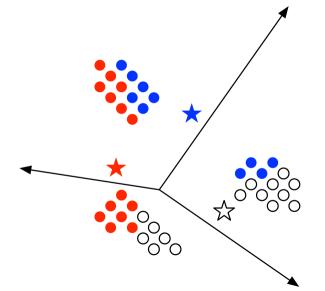
The stars are **cluster centers**, randomly assigned at first.

4 ロ ト 4 回 ト 4 目 ト 4 目 ト 目 の Q (や 6 / 45



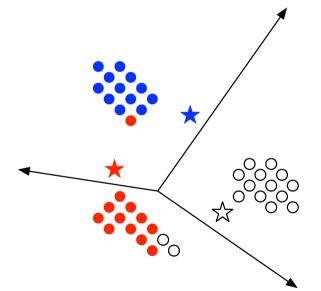
Assign each example to its nearest cluster center.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



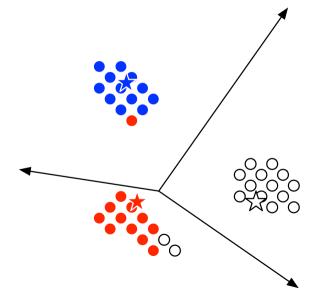
Recalculate cluster centers to reflect their respective examples.

4 ロ ト 4 団 ト 4 三 ト 4 三 ト 三 の Q ()
8 / 45



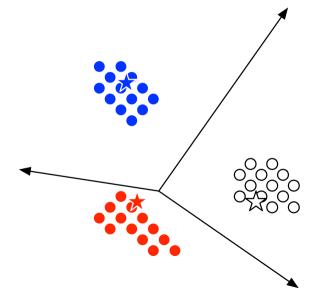
Assign each example to its nearest cluster center.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへの 9/45



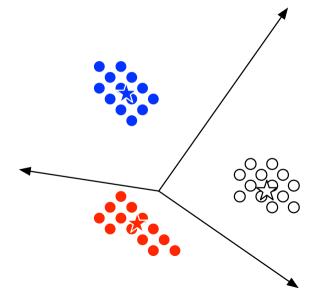
Recalculate cluster centers to reflect their respective examples.

<ロ > < 回 > < 回 > < 臣 > < 臣 > < 臣 > 臣 の Q (や 10 / 45



Assign each example to its nearest cluster center.

< □ > < □ > < □ > < 臣 > < 臣 > < 臣 > 臣 の Q (> 11/45



Recalculate cluster centers to reflect their respective examples.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQで 12/45

At this point, nothing will change; we have converged.

K-Means Clustering

Data: unlabeled data $D = \langle \mathbf{x}_n \rangle_{n=1}^N$, number of clusters K**Result**: cluster assignment z_n for each \mathbf{x}_n initialize each $\boldsymbol{\mu}_k$ to a random location, for $k \in \{1, \dots, K\}$; **do**

$$\left| \begin{array}{c} \text{for } n \in \{1, \dots, N\} \text{ do} \\ \# \text{ assign each data point to its nearest cluster-center let} \\ z_n = \operatorname{argmin}_k \|\mu_k - \mathbf{x}_n\|_2; \\ \text{end} \\ \text{for } k \in \{1, \dots, K\} \text{ do} \\ \# \text{ recenter each cluster} \\ \text{ let } \mathbf{X}_k = \{\mathbf{x}_n \mid z_n = k\}; \\ \text{ let } \boldsymbol{\mu}_k = \operatorname{mean}(\mathbf{X}_k); \\ \text{ end} \end{array} \right.$$

while any z_n changes from previous iteration; return $\{z_n\}_{n=1}^N$;

Algorithm 1: K-MEANS

1. Does it converge?

1. Does it converge? Yes.

1. Does it converge?

Yes.

Proof sketch: The z_n (cluster assignments) and the μ_k (cluster centers) can only take finitely many values: $z_n \in \{1, \ldots, K\}$ and μ_k must be a mean of a subset of the data. Each time we update any of them, we will never increase this function:

$$L(z_1,\ldots,z_N,\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_K) = \sum_{n=1}^N \left\|\mathbf{x}_n-\boldsymbol{\mu}_{z_n}\right\|_2^2 \ge 0$$

L is known as the **objective** of K-Means clustering. See Daume (2017) section 15.1 for more details.

1. Does it converge? Yes.

1. Does it converge? Yes.

2. Does the solution depend on the random initialization of the means μ_* ?

1. Does it converge? Yes.

2. Does the solution depend on the random initialization of the means $\mu_*?$ Yes.

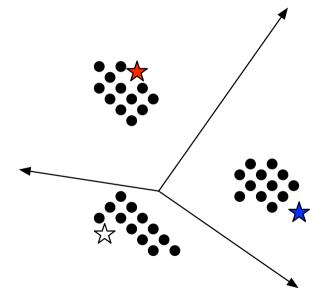
A Heuristic for Initializing K-Means

Data: unlabeled data $D = \langle \mathbf{x}_n \rangle_{n=1}^N$, number of clusters K **Result**: initial points $\langle \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K \rangle$ pick n uniformly at random from $\{1, \dots, N\}$ and let $\boldsymbol{\mu}_1 = \mathbf{x}_n$; **for** $k \in \{2, \dots, K\}$ **do** # find the example that is furthest from all previously selected means let $n = \underset{n \in \{1, \dots, N\}}{\operatorname{argmax}} \left(\underset{k' \in \{1, \dots, k-1\}}{\min} \| \mathbf{x}_n - \boldsymbol{\mu}_{k'} \|_2^2 \right)$; let $\boldsymbol{\mu}_k = \mathbf{x}_n$; **end**

return $\langle oldsymbol{\mu}_1, \dots, oldsymbol{\mu}_K
angle;$

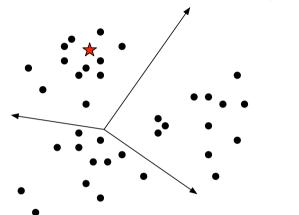
Algorithm 2: FURTHESTFIRST

 $\ensuremath{\mathrm{FurthestFirst}}$ in action



FURTHESTFIRST in action – still a good idea?

 $\overrightarrow{}$



Randomized Tweak on FURTHESTFIRST

Data: unlabeled data $D = \langle \mathbf{x}_n \rangle_{n=1}^N$, number of clusters K **Result**: initial points $\langle \boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_K \rangle$ pick n uniformly at random from $\{1, \ldots, N\}$ and let $\mu_1 = \mathbf{x}_n$; for $k \in \{2, ..., K\}$ do for all $n \in \{1, \dots, N\}$, let $\mathbf{d}[n] = \min_{k' \in \{1, \dots, k-1\}} \|\mathbf{x}_n - \boldsymbol{\mu}_{k'}\|_2^2 \ \#$ compute distances ; let $\mathbf{p} = \frac{1}{\sum_{n=1}^{N} \mathbf{d}[n]} \mathbf{d} \#$ normalize distances into a probability distribution; let *n* be a random sample from **p**; let $\mu_k = \mathbf{x}_n$;

end

return $\langle {oldsymbol \mu}_1, \ldots, {oldsymbol \mu}_K
angle;$

K-Means++

Using the randomized version of FURTHESTFIRST to initialize K-Means clustering is known as K-Means++.

Approximation guarantee: let L_K^* be the lowest value possible for $L(z_1, \ldots, z_N, \mu_1, \ldots, \mu_K)$, and let \hat{L}_K be the value we obtain after running K-Means++ with K clusters.

 $\mathbb{E}[\hat{L}_K] \le 8(\log K + 2)L_K^*$

Imagine testing values of K from K_{\min} up to K_{\max} .

Imagine testing values of K from K_{\min} up to $K_{\max}.$

In general, we expect $\hat{L}_{K+1} < \hat{L}_K$; that is, increasing K should always lead to a lower K-means objective.

Imagine testing values of K from K_{\min} up to $K_{\max}.$

In general, we expect $\hat{L}_{K+1} < \hat{L}_K$; that is, increasing K should always lead to a lower K-means objective.

Eventually, we'll see diminishing returns: as K goes up, the reduction in \hat{L} will be smaller and smaller.

Imagine testing values of K from K_{\min} up to K_{\max} .

In general, we expect $\hat{L}_{K+1} < \hat{L}_K$; that is, increasing K should always lead to a lower K-means objective.

Eventually, we'll see diminishing returns: as K goes up, the reduction in \hat{L} will be smaller and smaller.

Two ways to choose, both corresponding to "penalties" for having more clusters:

- Bayes information criterion (BIC): $K^* = \operatorname{argmin} \hat{L}_K + K \log d$
- Akaike information criterion (AIC): $K^* = \operatorname{argmin}_{K} \hat{L}_K + 2Kd$

where $\mathbf{x}_n \in \mathbb{R}^d$.

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

► Useful for visualization.

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

- ► Useful for visualization.
- Also fight the curse of dimensionality.

As before, you only have a training dataset consisting of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

As before, you only have a training dataset consisting of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

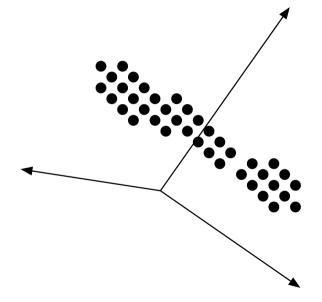
Is there a way to represent each $\mathbf{x}_n \in \mathbb{R}^d$ as a lower-dimensional vector?

As before, you only have a training dataset consisting of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

Is there a way to represent each $\mathbf{x}_n \in \mathbb{R}^d$ as a lower-dimensional vector?

(Why would we want to do this?)

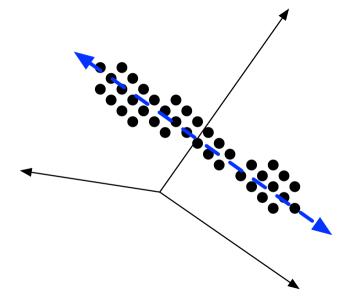
Dimension of Greatest Variance



Assume that the data are centered, i.e., that $\left(\langle \mathbf{x}_n
angle_{n=1}^N
ight) = \mathbf{0}.$

<ロ> < 団> < 巨> < 巨> < 巨> < 巨> < 巨 のへで 38/45

Dimension of Greatest Variance



Assume that the data are centered, i.e., that $(\langle \mathbf{x}_n \rangle_{n=1}^N) = \mathbf{0}.$

<ロ> < 団> < 巨> < 巨> < 巨> < 巨> < 巨 のへで 39/45

Let \mathbf{u} be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

Let ${\bf u}$ be the dimension of greatest variance, and (without loss of generality) let $\|{\bf u}\|_2^2=1.$

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} . (This should remind you a little bit of the perceptron's activation, $\mathbf{w} \cdot \mathbf{x}_n + b$.)

Let \mathbf{u} be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} . (This should remind you a little bit of the perceptron's activation, $\mathbf{w} \cdot \mathbf{x}_n + b$.)

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

Let **u** be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} . (This should remind you a little bit of the perceptron's activation, $\mathbf{w} \cdot \mathbf{x}_n + b$.)

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

This implies that the variance of $\langle p_1, \ldots, p_N \rangle$ is $\frac{1}{N} \sum_{n=1}^N p_n^2$.

Let **u** be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} . (This should remind you a little bit of the perceptron's activation, $\mathbf{w} \cdot \mathbf{x}_n + b$.)

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

This implies that the variance of
$$\langle p_1,\ldots,p_N
angle$$
 is $rac{1}{N}\sum_{n=1}^N p_n^2.$

The **u** that gives the greatest variance, then, is:

$$\underset{\mathbf{u}}{\operatorname{argmax}} \sum_{n=1}^{N} (\mathbf{x}_n \cdot \mathbf{u})^2$$

Hal Daume. A Course in Machine Learning (v0.9). Self-published at http://ciml.info/, 2017.