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Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

The stars are cluster centers,
randomly assigned at first.
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reflect their respective examples.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

At this point, nothing will change;
we have converged.
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K-Means Clustering
Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: cluster assignment zn for each xn

initialize each µk to a random location, for k ∈ {1, . . . ,K};
do

for n ∈ {1, . . . , N} do
# assign each data point to its nearest cluster-center let
zn = argmink ‖µk − xn‖2;

end
for k ∈ {1, . . . ,K} do

# recenter each cluster
let Xk = {xn | zn = k};
let µk = mean(Xk);

end

while any zn changes from previous iteration;
return {zn}Nn=1;

Algorithm 1: K-Means
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Questions about K-Means

1. Does it converge?

2. Does the solution depend on the random initialization of the means µ∗?
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Questions about K-Means

1. Does it converge?
Yes.
Proof sketch: The zn (cluster assignments) and the µk (cluster centers) can only
take finitely many values: zn ∈ {1, . . . ,K} and µk must be a mean of a subset of
the data. Each time we update any of them, we will never increase this function:

L(z1, . . . , zN ,µ1, . . . ,µK) =

N∑
n=1

∥∥xn − µzn

∥∥2
2
≥ 0

L is known as the objective of K-Means clustering.
See Daume (2017) section 15.1 for more details.

2. Does the solution depend on the random initialization of the means µ∗?
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A Heuristic for Initializing K-Means

Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: initial points 〈µ1, . . . ,µK〉
pick n uniformly at random from {1, . . . , N} and let µ1 = xn;
for k ∈ {2, . . . ,K} do

# find the example that is furthest from all previously selected means

let n = argmax
n∈{1,...,N}

(
min

k′∈{1,...,k−1}
‖xn − µk′‖22

)
;

let µk = xn;

end
return 〈µ1, . . . ,µK〉;

Algorithm 2: FurthestFirst
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FurthestFirst in action
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FurthestFirst in action – still a good idea?
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Randomized Tweak on FurthestFirst

Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: initial points 〈µ1, . . . ,µK〉
pick n uniformly at random from {1, . . . , N} and let µ1 = xn;
for k ∈ {2, . . . ,K} do

for all n ∈ {1, . . . , N}, let d[n] = min
k′∈{1,...,k−1}

‖xn − µk′‖22 # compute distances ;

let p = 1∑N
n=1 d[n]

d # normalize distances into a probability distribution;

let n be a random sample from p;
let µk = xn;

end
return 〈µ1, . . . ,µK〉;
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K-Means++

Using the randomized version of FurthestFirst to initialize K-Means clustering is
known as K-Means++.

Approximation guarantee: let L∗K be the lowest value possible for

L(z1, . . . , zN ,µ1, . . . ,µK), and let L̂K be the value we obtain after running
K-Means++ with K clusters.

E[L̂K ] ≤ 8(logK + 2)L∗K
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Choosing K (Hyperparameter Tuning)

Imagine testing values of K from Kmin up to Kmax.

In general, we expect L̂K+1 < L̂K ; that is, increasing K should always lead to a lower
K-means objective.

Eventually, we’ll see diminishing returns: as K goes up, the reduction in L̂ will be
smaller and smaller.

Two ways to choose, both corresponding to “penalties” for having more clusters:

I Bayes information criterion (BIC): K∗ = argmin
K

L̂K +K log d

I Akaike information criterion (AIC): K∗ = argmin
K

L̂K + 2Kd

where xn ∈ Rd.
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Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.
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Linear Dimensionality Reduction

34 / 45



Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2
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