
Machine Learning (CSE 446):
Unsupervised Learning

Swabha Swayamdipta & Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

October 13, 2017

1 / 45

Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

2 / 45

Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

3 / 45

Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

4 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

5 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

The stars are cluster centers,
randomly assigned at first.

6 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.

7 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

8 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.

9 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

10 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.

11 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

12 / 45

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

At this point, nothing will change;
we have converged.

13 / 45

K-Means Clustering
Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: cluster assignment zn for each xn

initialize each µk to a random location, for k ∈ {1, . . . ,K};
do

for n ∈ {1, . . . , N} do
assign each data point to its nearest cluster-center let
zn = argmink ‖µk − xn‖2;

end
for k ∈ {1, . . . ,K} do

recenter each cluster
let Xk = {xn | zn = k};
let µk = mean(Xk);

end

while any zn changes from previous iteration;
return {zn}Nn=1;

Algorithm 1: K-Means
14 / 45

Questions about K-Means

1. Does it converge?

2. Does the solution depend on the random initialization of the means µ∗?

15 / 45

Questions about K-Means

1. Does it converge?
Yes.

2. Does the solution depend on the random initialization of the means µ∗?

16 / 45

Questions about K-Means

1. Does it converge?
Yes.
Proof sketch: The zn (cluster assignments) and the µk (cluster centers) can only
take finitely many values: zn ∈ {1, . . . ,K} and µk must be a mean of a subset of
the data. Each time we update any of them, we will never increase this function:

L(z1, . . . , zN ,µ1, . . . ,µK) =

N∑
n=1

∥∥xn − µzn

∥∥2
2
≥ 0

L is known as the objective of K-Means clustering.
See Daume (2017) section 15.1 for more details.

2. Does the solution depend on the random initialization of the means µ∗?

17 / 45

Questions about K-Means

1. Does it converge?
Yes.

2. Does the solution depend on the random initialization of the means µ∗?

18 / 45

Questions about K-Means

1. Does it converge?
Yes.

2. Does the solution depend on the random initialization of the means µ∗?

19 / 45

Questions about K-Means

1. Does it converge?
Yes.

2. Does the solution depend on the random initialization of the means µ∗?
Yes.

20 / 45

A Heuristic for Initializing K-Means

Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: initial points 〈µ1, . . . ,µK〉
pick n uniformly at random from {1, . . . , N} and let µ1 = xn;
for k ∈ {2, . . . ,K} do

find the example that is furthest from all previously selected means

let n = argmax
n∈{1,...,N}

(
min

k′∈{1,...,k−1}
‖xn − µk′‖22

)
;

let µk = xn;

end
return 〈µ1, . . . ,µK〉;

Algorithm 2: FurthestFirst

21 / 45

FurthestFirst in action

22 / 45

FurthestFirst in action – still a good idea?

23 / 45

Randomized Tweak on FurthestFirst

Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: initial points 〈µ1, . . . ,µK〉
pick n uniformly at random from {1, . . . , N} and let µ1 = xn;
for k ∈ {2, . . . ,K} do

for all n ∈ {1, . . . , N}, let d[n] = min
k′∈{1,...,k−1}

‖xn − µk′‖22 # compute distances ;

let p = 1∑N
n=1 d[n]

d # normalize distances into a probability distribution;

let n be a random sample from p;
let µk = xn;

end
return 〈µ1, . . . ,µK〉;

24 / 45

K-Means++

Using the randomized version of FurthestFirst to initialize K-Means clustering is
known as K-Means++.

Approximation guarantee: let L∗K be the lowest value possible for

L(z1, . . . , zN ,µ1, . . . ,µK), and let L̂K be the value we obtain after running
K-Means++ with K clusters.

E[L̂K] ≤ 8(logK + 2)L∗K

25 / 45

Choosing K (Hyperparameter Tuning)

Imagine testing values of K from Kmin up to Kmax.

In general, we expect L̂K+1 < L̂K ; that is, increasing K should always lead to a lower
K-means objective.

Eventually, we’ll see diminishing returns: as K goes up, the reduction in L̂ will be
smaller and smaller.

Two ways to choose, both corresponding to “penalties” for having more clusters:

I Bayes information criterion (BIC): K∗ = argmin
K

L̂K +K log d

I Akaike information criterion (AIC): K∗ = argmin
K

L̂K + 2Kd

where xn ∈ Rd.

26 / 45

Choosing K (Hyperparameter Tuning)

Imagine testing values of K from Kmin up to Kmax.

In general, we expect L̂K+1 < L̂K ; that is, increasing K should always lead to a lower
K-means objective.

Eventually, we’ll see diminishing returns: as K goes up, the reduction in L̂ will be
smaller and smaller.

Two ways to choose, both corresponding to “penalties” for having more clusters:

I Bayes information criterion (BIC): K∗ = argmin
K

L̂K +K log d

I Akaike information criterion (AIC): K∗ = argmin
K

L̂K + 2Kd

where xn ∈ Rd.

27 / 45

Choosing K (Hyperparameter Tuning)

Imagine testing values of K from Kmin up to Kmax.

In general, we expect L̂K+1 < L̂K ; that is, increasing K should always lead to a lower
K-means objective.

Eventually, we’ll see diminishing returns: as K goes up, the reduction in L̂ will be
smaller and smaller.

Two ways to choose, both corresponding to “penalties” for having more clusters:

I Bayes information criterion (BIC): K∗ = argmin
K

L̂K +K log d

I Akaike information criterion (AIC): K∗ = argmin
K

L̂K + 2Kd

where xn ∈ Rd.

28 / 45

Choosing K (Hyperparameter Tuning)

Imagine testing values of K from Kmin up to Kmax.

In general, we expect L̂K+1 < L̂K ; that is, increasing K should always lead to a lower
K-means objective.

Eventually, we’ll see diminishing returns: as K goes up, the reduction in L̂ will be
smaller and smaller.

Two ways to choose, both corresponding to “penalties” for having more clusters:

I Bayes information criterion (BIC): K∗ = argmin
K

L̂K +K log d

I Akaike information criterion (AIC): K∗ = argmin
K

L̂K + 2Kd

where xn ∈ Rd.

29 / 45

Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.

30 / 45

Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.

31 / 45

Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.

32 / 45

Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.

33 / 45

Linear Dimensionality Reduction

34 / 45

Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)

35 / 45

Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)

36 / 45

Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)

37 / 45

Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.

38 / 45

Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.

39 / 45

Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

40 / 45

Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

41 / 45

Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

42 / 45

Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

43 / 45

Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.
(This should remind you a little bit of the perceptron’s activation, w · xn + b.)

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

44 / 45

References I

Hal Daume. A Course in Machine Learning (v0.9). Self-published at
http://ciml.info/, 2017.

45 / 45

http://ciml.info/

