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Big Questions in Learning Theory

I When is learning possible?

I How much data is required?

I Will a learned classifier generalize to test data?
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Theory can come before or after practice.
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The Ultimate Learning Algorithm?

Simple D that is inherently noisy: X and Y both binary. Let p(X = Y ) = 0.8.

There’s simply no way to get better than 80% accuracy with any classifier f .

Even if your data aren’t noisy and low error is achievable by some f , you still have to
worry about lousy samples from D.

You can’t hope for perfection every time, or even “pretty good” every time, or
perfection most of the time. The best you can hope for is pretty good, most of the
time.
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Probably Approximately Correct

I Probably: on most test sets (i.e., succeed on (1− δ) of the possible test sets)

I Approximately Correct: low error (i.e., accuracy at least (1− ε))

Definition: An (ε, δ)-PAC learning algorithm is defined as one that, given samples
from any data distribution D, returns a “bad function” with probability ≤ δ, where a
bad function is one whose test error rate is greater than ε on D.
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Efficiency

Definition: An (ε, δ)-PAC learning algorithm is efficient if its runtime is polynomial in
1
ε and 1

δ .
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Efficiency

Definition: An (ε, δ)-PAC learning algorithm is efficient if its runtime is polynomial in
1
ε and 1

δ .

E.g., if you want to reduce error rate from 5% to 4%, you shouldn’t require an
exponential increase in computational resources.

Note that this extends to the size of the training set: if your training dataset must
increase exponentially, that will also affect runtime!
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Example: “And-Literals” Machine
Thanks to Andrew Moore; see also https://www.autonlab.org/_media/tutorials/pac05.pdf

Let X range over binary vectors (unknown distribution), denoted 〈X1, . . . , Xd〉.

12 / 47

https://www.autonlab.org/_media/tutorials/pac05.pdf


Example: “And-Literals” Machine
Thanks to Andrew Moore; see also https://www.autonlab.org/_media/tutorials/pac05.pdf

Let X range over binary vectors (unknown distribution), denoted 〈X1, . . . , Xd〉.

Let H, the set of hypotheses, contain all logical conjunctions of 〈X1, . . . , Xd〉 and their
negations.

13 / 47

https://www.autonlab.org/_media/tutorials/pac05.pdf


Example: “And-Literals” Machine
Thanks to Andrew Moore; see also https://www.autonlab.org/_media/tutorials/pac05.pdf

Let X range over binary vectors (unknown distribution), denoted 〈X1, . . . , Xd〉.

Let H, the set of hypotheses, contain all logical conjunctions of 〈X1, . . . , Xd〉 and their
negations.

Example: X1 ∧X7 ∧ ¬X9.
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Example: “And-Literals” Machine
Thanks to Andrew Moore; see also https://www.autonlab.org/_media/tutorials/pac05.pdf

Let X range over binary vectors (unknown distribution), denoted 〈X1, . . . , Xd〉.

Let H, the set of hypotheses, contain all logical conjunctions of 〈X1, . . . , Xd〉 and their
negations.

How many hypotheses are there, |H|? 3d

Assume: Y is given by some h∗ ∈ H. That is, for a given x, y = fh∗(x), without noise.

Learning: choose h ∈ H given a training dataset drawn from distribution D.
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The Game

I We choose the “machine”
(e.g., the and-literal
machine), or the class of
functions F = {fh : h ∈ H}.

I Nature chooses h∗ ∈ H and
randomly samples N inputs
from D (which is fixed and
unknown), then labels them
using yn = fh∗(xn).

I Let H0 contain all h ∈ H that
achieve zero training set error.
We choose some hest ∈ H0.

I Let Hbad contain all h ∈ H
such that the test set error of
fh is greater than ε.
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achieve zero training set error.
We choose some hest ∈ H0.

I Let Hbad contain all h ∈ H
such that the test set error of
fh is greater than ε.

First consider p(h ∈ H0 | h ∈ Hbad)

= p(∀n ∈ {1, . . . , N}, fh(xn) = yn | h ∈ Hbad) ≤ (1− ε)N

≤ e−ε·N

In other words, this unfortunate event is
bounded by the probability of avoiding one of
the ε× 100% cases of h’s error, N times.
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≤ e−ε·N

Now consider p(hest ∈ Hbad)

≤ p(∃h : h ∈ H0 ∧ h ∈ Hbad)

= p

(∨
h∈H

h ∈ H0 ∧ h ∈ Hbad

)
≤
∑
h∈H

p(h ∈ H0 ∧ h ∈ Hbad) “union bound”

Note that
p(P ∧Q) = p(P | Q) · p(Q)︸ ︷︷ ︸

≤1

≤ p(P | Q).
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h∈H
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≤
∑
h∈H

p(h ∈ H0 | h ∈ Hbad)

≤ |H| · (1− ε)N ≤ |H| · e−ε·N
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Blumer Bound

We want to bound p(hest ∈ Hbad) ≤ δ:

|H| · e−ε·N ≤ δ

⇒ N ≥ 1

ε

(
ln |H|+ ln

1

δ

)
≈ 0.69

ε

(
log2 |H|+ log2

1

δ

)
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|H| · e−ε·N ≤ δ

⇒ N ≥ 1

ε

(
ln |H|+ ln

1

δ

)
≈ 0.69

ε

(
log2 |H|+ log2

1

δ

)
For our and-literals machine, |H| = 3d, so we need 1

ε

(
1.1d+ ln 1

δ

)
training examples

to “PAC-learn.”
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Blumer Bound

We want to bound p(hest ∈ Hbad) ≤ δ:

|H| · e−ε·N ≤ δ

⇒ N ≥ 1

ε

(
ln |H|+ ln

1

δ

)
≈ 0.69

ε

(
log2 |H|+ log2

1

δ

)
Corollary: if hest ∈ H0, then you can estimate ε as

1

N

(
ln |H|+ ln

1

δ

)
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Blumer Bound

We want to bound p(hest ∈ Hbad) ≤ δ:

|H| · e−ε·N ≤ δ

⇒ N ≥ 1

ε

(
ln |H|+ ln

1

δ

)
≈ 0.69

ε

(
log2 |H|+ log2

1

δ

)
General observation: if we can decrease |H| without losing good solutions, that’s a
good thing.
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Simple PAC-Learnable Algorithm for And-Literals Machine
Data: D = 〈(xn, yn)〉Nn=1

Result: f
initialize: f = x1 ∧ x2 ∧ · · · ∧ xd ∧ ¬x1 ∧ ¬x2 ∧ · · · ∧ ¬xd;
for n ∈ {1, . . . , N} do

if yn = +1 then
for j ∈ {1, . . . , d} do

if xn[j] = 0 then
remove xj from f

end
else

remove ¬xj from f
end

end

end

end
return f

Algorithm 1: ThrowOutBadTerms 35 / 47



Another Example: Lookup Table

Suppose H is all lookup tables, where we map every vector in {0, 1}d to a binary value.
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Another Example: Lookup Table

Suppose H is all lookup tables, where we map every vector in {0, 1}d to a binary value.

|H| = 22
d

N ≥ 0.69

ε

(
2d + log2

1

δ

)
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Shallow Decision Trees (Binary Features, Binary Classification)

Let H(k) contain all decision trees of depth k.

|H(0)| = 2

|H(k)| = d · |H(k−1)|2

So log2 |H(k)| = (2k − 1) · (1 + log2 d) + 1, and we need

N ≥ 0.69

ε

(
(2k − 1) · (1 + log2 d) + 1 + log2

1

δ

)
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(The rest of the slides are from the wrap-up on November 29.)
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Quick Review

I (ε, δ) PAC-learners (and efficiency)

I For a finite hypothesis class H that contains h∗, and noise-free data:

N ≥ 1

ε

(
ln |H|+ ln

1

δ

)
I Analyses for and-literal machines, lookup table machines, k-depth decision trees.
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Limitations

I We’ve assumed no noise.

I We’ve assumed that H is finite.
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Limitations

I We’ve assumed no noise.

I We’ve assumed that H is finite.

Theoretical results for infinite H rely on measures of complexity like the
Vapnik-Chernovenkis (VC) dimension, which typically we can only bound.

The VC dimension of a hypothesis space H over input space X is the largest K such
that there exists a set of K elements of X (call it X) such that for any binary labeling
of X, some h ∈ H matches the labeling.
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