Machine Learning (CSE 446): Support Vector Machines (continued)

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

November 20, 2017

Quick Review: Kernels and SVMs

Kernels

A kernel function (implicitly) computes:

$$K(\mathbf{x}, \mathbf{v}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{v})$$

for some ϕ . Typically it is *cheap* to compute $K(\cdot,\cdot)$, and we never explicitly represent $\phi(\mathbf{v})$ for any vector \mathbf{v} .

Some kernels:

linear
$$K^{\mathsf{linear}}(\mathbf{x}, \mathbf{v}) = \mathbf{x} \cdot \mathbf{v}$$
 quadratic $K^{\mathsf{quad}}(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^2$ cubic $K^{\mathsf{cubic}}(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^3$ polynomial $K^{\mathsf{poly}}_p(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^p$ radial basis function $K^{\mathsf{rbf}}_p(\mathbf{x}, \mathbf{v}) = \exp\left(-\gamma \|\mathbf{x} - \mathbf{v}\|_2^2\right)$ hyperbolic tangent $\tilde{K}^{\mathsf{tanh}}(\mathbf{x}, \mathbf{v}) = \tanh(1 + \mathbf{x} \cdot \mathbf{v})$ (not a kernel) all conjunctions $K^{\mathsf{all conj}}(\mathbf{x}, \mathbf{v}) = \prod_{j=1}^d (1 + x_j v_j)$ (for binary features)

Choosing a Hyperplane

"Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\|\mathbf{w}\|_2^2} & + C \sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

(C is a hyperparameter.)

"Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\|\mathbf{w}\|_2^2} & + C\sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

(C is a hyperparameter.)

Claim: solving this problem is equivalent to minimizing the hinge loss, with L_2 regularization. Choosing C equates to choosing λ (the regularization strength).

The Dual Form of Soft-Margin SVMs

$$\begin{split} & \min_{\pmb{\alpha}} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{\pmb{n}} \cdot \alpha_{\pmb{i}} \cdot y_n \cdot y_i \cdot (\mathbf{x}_n \cdot \mathbf{x}_i) - \sum_{n=1}^{N} \alpha_{\pmb{n}} \\ & \text{s.t. } 0 \leq \underline{\alpha_n} \leq C, \forall n \end{split}$$

This is a quadratic problem with "bound" constraints.

Note that now it is possible to kernelize, replacing $\mathbf{x}_n \cdot \mathbf{x}_i$ with $K(\mathbf{x}_n, \mathbf{x}_i)$.

$$\min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{n} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot K(\mathbf{x}_{n}, \mathbf{x}_{i}) - \sum_{n=1}^{N} \alpha_{n}$$
s.t. $0 \le \alpha_{n} \le C, \forall n$

$$\begin{aligned} & \min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{n} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot K(\mathbf{x}_{n}, \mathbf{x}_{i}) - \sum_{n=1}^{N} \alpha_{n} \\ & \text{s.t. } 0 \leq \alpha_{n} \leq C, \forall n \end{aligned}$$

Consider n and i such that $y_n = y_i$, so $y_n \cdot y_i = +1$, so that the objective seeks to decrease $\alpha_n \cdot \alpha_i \cdot K(\mathbf{x}_n, \mathbf{x}_i)$.

$$\min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{n} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot K(\mathbf{x}_{n}, \mathbf{x}_{i}) - \sum_{n=1}^{N} \alpha_{n}$$
s.t. $0 \le \alpha_{n} \le C, \forall n$

Consider n and i such that $y_n = y_i$, so $y_n \cdot y_i = +1$, so that the objective seeks to decrease $\alpha_n \cdot \alpha_i \cdot K(\mathbf{x}_n, \mathbf{x}_i)$.

- ▶ If $K(\mathbf{x}_n, \mathbf{x}_i)$ is small, then the α s don't matter much.
- ▶ If $K(\mathbf{x}_n, \mathbf{x}_i)$ is large (\mathbf{x}_n and \mathbf{x}_i are similar), then one of the α s should be close to zero.

$$\min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{n} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot K(\mathbf{x}_{n}, \mathbf{x}_{i}) - \sum_{n=1}^{N} \alpha_{n}$$
s.t. $0 \le \alpha_{n} \le C, \forall n$

Consider n and i such that $y_n \neq y_i$, so $y_n \cdot y_i = -1$, so that the objective seeks to increase $\alpha_n \cdot \alpha_i \cdot K(\mathbf{x}_n, \mathbf{x}_i)$.

$$\begin{aligned} & \min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \frac{\alpha_{n} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot K(\mathbf{x}_{n}, \mathbf{x}_{i}) - \sum_{n=1}^{N} \frac{\alpha_{n}}{\alpha_{n}} \\ & \text{s.t. } 0 \leq \frac{\alpha_{n}}{\alpha_{n}} \leq C, \forall n \end{aligned}$$

Consider n and i such that $y_n \neq y_i$, so $y_n \cdot y_i = -1$, so that the objective seeks to increase $\alpha_n \cdot \alpha_i \cdot K(\mathbf{x}_n, \mathbf{x}_i)$.

- ▶ If $K(\mathbf{x}_n, \mathbf{x}_i)$ is small, then the α s don't matter much.
- ▶ If $K(\mathbf{x}_n, \mathbf{x}_i)$ is large (\mathbf{x}_n and \mathbf{x}_i are similar), then one of the α s should both be large.

A Slightly Different View

When will α_n be nonzero?

A Slightly Different View

When will α_n be nonzero?

Optimization theory says that, at the optimal α ,

$$\alpha_{n} \cdot (y_{n} \cdot (\mathbf{w} \cdot \mathbf{x}_{n} + b) - 1 + \zeta_{n}) = 0$$

$$\Rightarrow \alpha_{n} = 0 \quad \lor \quad y_{n} \cdot (\mathbf{w} \cdot \mathbf{x}_{n} + b) - 1 + \zeta_{n} = 0$$

A Slightly Different View

When will α_n be nonzero?

Optimization theory says that, at the optimal α ,

$$\alpha_{n} \cdot (y_{n} \cdot (\mathbf{w} \cdot \mathbf{x}_{n} + b) - 1 + \zeta_{n}) = 0$$

$$\Rightarrow \alpha_{n} = 0 \quad \forall \quad y_{n} \cdot (\mathbf{w} \cdot \mathbf{x}_{n} + b) - 1 + \zeta_{n} = 0$$

So $\alpha_n \neq 0$ only for n where \mathbf{x}_n is precisely on the margin of the hyperplane.

But why are they called "support vector machines"?

The "support vectors" are the data points \mathbf{x}_n where $\alpha_n > 0$.

They "support" the decision boundary.

They are the most "confusable" points; changing them will move the boundary.