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Quick Review: Kernels and SVMs
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Kernels
A kernel function (implicitly) computes:
K(x,v) = ¢(x) - ¢(v)

for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.
Some kernels:

linear K'"(x.v)=x-v
quadratic K%9(x v) = (1 +x-v)?
cubic K®P¢(x v)=(1+x-v)3
x,v)=(1+x-v)P

radial basis function K;bf

(
(
(

polynomial Kg°'y(
(
( =tanh(l1+x-v) (not a kernel)
(

= H?:l(l + xjv;) (for binary features)
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Choosing a Hyperplane
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“Soft-Margin SVM"

small slack
large margin =~
~

N
. 2
C
min w3 + nzlcn

St Yn (W Xp+b) >1—(,n
G 20,Vn

(C'is a hyperparameter.)



“Soft-Margin SVM"

small slack
large margin

—— N
. 2
C
Inin [wllz  + nE_ICn

s.t. yn'(w'xn+b) >1—(q,Vn
Cn > 0,Yn

(C is a hyperparameter.)

Claim: solving this problem is equivalent to minimizing the hinge loss, with Lo
regularization. Choosing C' equates to choosing A (the regularization strength).
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The Dual Form of Soft-Margin SVMs

Qn

Mz

HllIl g E p QG - Yn - Yi - Xn Xz

nlzl n=1

st. 0< o, <C,¥n

This is a quadratic problem with “bound” constraints.

Note that now it is possible to kernelize, replacing x,, - x; with K (x,, X;).



Thinking about the Dual Form

mln Zzan QG - Yp yz'K(XnaXi)_

n=1 =1
st. 0< o, <C,Vn
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Thinking about the Dual Form

N N N
1
min B E E G Yn Y K (X, X5) g an
n=1i=1 n=1

st. 0< o, <C,Vn

Consider n and ¢ such that y, = y;, so y, - ¥; = +1, so that the objective seeks to
decrease o, - v - K (X, X;).
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Thinking about the Dual Form

L NN
moién522an'(Jzi'yn-yi-K(xn,xi) —Zan

n=1 i=1 n=1

st. 0< o, <C,Vn

Consider n and ¢ such that y,, = ¥;, so y, - ¥; = +1, so that the objective seeks to
decrease v, - v - K (X, X;).

» If K(xp,x;) is small, then the as don't matter much.

> If K(x,,x;) is large (x,, and x; are similar), then one of the as should be close to
zero.
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Thinking about the Dual Form

st. 0< o, <C,Vn

Consider n and ¢ such that y, # y;, so yn - ¥; = —1, so that the objective seeks to
increase v, - v - K(Xp,X;).



Thinking about the Dual Form

N
Hlln E E Oy QG Yn ~ Y- K(Xna XZ') E 79
n=1i=1 n=1

st. 0< o, <C,Vn

Consider n and ¢ such that y, # y;, so yn - ¥; = —1, so that the objective seeks to
increase v, - v - K(Xp,X;).

» If K(xy,x;) is small, then the as don’t matter much.

» If K(x,,x;) is large (x5, and x; are similar), then one of the as should both be
large.
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A Slightly Different View

When will «,, be nonzero?
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A Slightly Different View

When will o, be nonzero?
Optimization theory says that, at the optimal «,

Oén'(yn'(w'xn“‘b)_l“‘Cn):O
= a,=0 V yp,-(wW-x,+b) -1+, =0
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A Slightly Different View
When will «,, be nonzero?

Optimization theory says that, at the optimal «,

Oén‘(yn'(w'xn+b)_1+Cn):O

= a,=0 V yp-(wW-x,+b) -1+, =0
So «,, # 0 only for n where x,, is precisely on the margin of the hyperplane
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But why are they called “support vector machines”?

The “support vectors” are the data points x,, where «,, > 0.

They “support” the decision boundary.

They are the most “confusable” points; changing them will move the boundary.
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