Machine Learning (CSE 446): Support Vector Machines

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

November 17, 2017

Quick Review: Kernels and Kernelized Perceptron

Kernels

A kernel function (implicitly) computes:

$$K(\mathbf{x}, \mathbf{v}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{v})$$

for some ϕ . Typically it is *cheap* to compute $K(\cdot,\cdot)$, and we never explicitly represent $\phi(\mathbf{v})$ for any vector \mathbf{v} .

Some kernels:

linear
$$K^{\mathsf{linear}}(\mathbf{x}, \mathbf{v}) = \mathbf{x} \cdot \mathbf{v}$$
 quadratic $K^{\mathsf{quad}}(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^2$ cubic $K^{\mathsf{cubic}}(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^3$ polynomial $K^{\mathsf{poly}}_p(\mathbf{x}, \mathbf{v}) = (1 + \mathbf{x} \cdot \mathbf{v})^p$ radial basis function $K^{\mathsf{rbf}}_{\gamma}(\mathbf{x}, \mathbf{v}) = \exp\left(-\gamma \|\mathbf{x} - \mathbf{v}\|_2^2\right)$ hyperbolic tangent $\tilde{K}^{\mathsf{tanh}}(\mathbf{x}, \mathbf{v}) = \tanh(1 + \mathbf{x} \cdot \mathbf{v})$ (not a kernel) all conjunctions $K^{\mathsf{all conj}}(\mathbf{x}, \mathbf{v}) = \prod_{j=1}^d (1 + x_j v_j)$ (for binary features)

Perceptron Representer Theorem

At every stage of learning, there exist $\langle \alpha_1, \alpha_2, \dots, \alpha_N \rangle$ such that

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n \cdot \mathbf{x}_n = \boldsymbol{\alpha}^{\top} \mathbf{X}$$

In other words, w is always in the span of the training data.

$\phi(\mathbf{x}_n)$ is Never Explicitly Computed!

$$\begin{split} \text{predict:} \quad \hat{y} &= \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i \cdot K(\mathbf{x}_i, \mathbf{x}_n) + b\right) \\ \text{update:} \quad \alpha_n^{(\text{new})} &\leftarrow \alpha_n^{(\text{old})} + y_n \end{split}$$

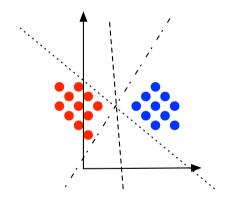
We only calculate inner products of such vectors.

Kernelized Perceptron Learning Algorithm

```
Data: D = \langle (\mathbf{x}_n, y_n) \rangle_{n=1}^N, number of epochs E
Result: weights \alpha and bias b
initialize: \alpha = 0 and b = 0:
for e \in \{1, ..., E\} do
    for n \in \{1, ..., N\}, in random order do
  \hat{y} = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i \cdot K(\mathbf{x}_i, \mathbf{x}_n) + b\right);
end
end
return \alpha, b
```

Back to linear models, for now . . .

Choosing a Hyperplane



The preference for a decision boundary with a **large margin** is an example of inductive bias.

$$\max_{\mathbf{w},b} \overbrace{\min_{n} y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)}^{\gamma(\mathbf{w},b)}$$
s.t.
$$\mathbf{w} \cdot \mathbf{x}_n + b \ge \varepsilon, \forall n : y_n = +1$$

$$\mathbf{w} \cdot \mathbf{x}_n + b \le -\varepsilon, \forall n : y_n = -1$$

The preference for a decision boundary with a **large margin** is an example of inductive bias.

$$\begin{aligned} & \max_{\mathbf{w},b} \gamma(\mathbf{w},b) \\ \text{s.t.} & & \mathbf{w} \cdot \mathbf{x}_n + b \geq \varepsilon, \forall n: y_n = +1 \\ & & & \mathbf{w} \cdot \mathbf{x}_n + b \leq -\varepsilon, \forall n: y_n = -1 \end{aligned}$$

The preference for a decision boundary with a **large margin** is an example of inductive bias.

$$\begin{aligned} & \min_{\mathbf{w},b} \frac{1}{\gamma(\mathbf{w},b)} \\ & \text{s.t. } \mathbf{w} \cdot \mathbf{x}_n + b \geq \varepsilon, \forall n: y_n = +1 \\ & \mathbf{w} \cdot \mathbf{x}_n + b \leq -\varepsilon, \forall n: y_n = -1 \end{aligned}$$

The preference for a decision boundary with a **large margin** is an example of inductive bias.

$$\begin{aligned} & \min_{\mathbf{w}, b} \frac{1}{\gamma(\mathbf{w}, b)} \\ & \text{s.t. } y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq \varepsilon, \forall n \end{aligned}$$

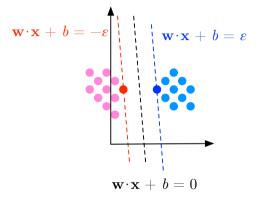
The preference for a decision boundary with a **large margin** is an example of inductive bias.

$$\min_{\mathbf{w},b} \frac{1}{\gamma(\mathbf{w},b)}$$
s.t. $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge \varepsilon, \forall n$

The constraints ensure that ${\bf w}$ and b form a separating hyperplane; the choice of $\varepsilon>0$ is arbitrary.

The perceptron looked for $some(\mathbf{w},b)$ that satisfied the constraints; now we want the (\mathbf{w},b) that maximizes the margin!

Solving for $\gamma(\mathbf{w}, b)$



Let \mathbf{x}_+ be one training datapoint such that $\mathbf{w} \cdot \mathbf{x}_+ + b = \varepsilon$. Let \mathbf{x}_- be one training datapoint such that $\mathbf{w} \cdot \mathbf{x}_- + b = -\varepsilon$.

Solving for $\gamma(\mathbf{w}, b)$

$$\mathbf{w} \cdot \mathbf{x} + b = -\varepsilon$$
 $\mathbf{w} \cdot \mathbf{x} + b = \varepsilon$
 $\mathbf{w} \cdot \mathbf{x} + b = 0$

$$\gamma(\mathbf{w}, b) = \mathsf{distance}(\mathbf{x}_+, [\mathbf{w} \cdot \mathbf{x} + b = 0]) + \mathsf{distance}(\mathbf{x}_-, [\mathbf{w} \cdot \mathbf{x} + b = 0])$$

Solving for $\gamma(\mathbf{w}, b)$

$$\mathbf{w} \cdot \mathbf{x} + b = -\varepsilon$$
 $\mathbf{w} \cdot \mathbf{x} + b = \varepsilon$
 $\mathbf{w} \cdot \mathbf{x} + b = 0$

$$\gamma(\mathbf{w}, b) = \frac{|\mathbf{w} \cdot \mathbf{x}_+ + b|}{\|\mathbf{w}\|_2} + \frac{|\mathbf{w} \cdot \mathbf{x}_- + b|}{\|\mathbf{w}\|_2} = \frac{2\varepsilon}{\|\mathbf{w}\|_2}$$

"Hard Margin SVM"

$$\min_{\mathbf{w},b} \frac{1}{\gamma(\mathbf{w},b)}$$

s.t. $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge \varepsilon, \forall n$

$$\min_{\mathbf{w},b} \frac{1}{2\varepsilon} \|\mathbf{w}\|_2^2$$

s.t. $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge \varepsilon, \forall n$

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t. $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge 1, \forall n$

Relaxing the Constraints

Feasible set:

$$\{(\mathbf{w}, b) : y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge 1, \forall n\}$$

It's quite plausible that the feasible set will be empty.

Relaxing the Constraints

Feasible set:

$$\{(\mathbf{w},b): y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge 1, \forall n\}$$

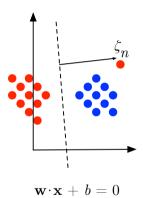
It's quite plausible that the feasible set will be empty.

Solution: add some "slack" for every instance n.

$$\min_{\mathbf{w},b,\zeta} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{n=1}^{N} \zeta_{n}$$
s.t. $y_{n} \cdot (\mathbf{w} \cdot \mathbf{x}_{n} + b) \ge 1 - \zeta_{n}, \forall n$

$$\zeta_{n} \ge 0, \forall n$$

Slack



"Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\|\mathbf{w}\|_2^2} & + C\sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

(C is a hyperparameter.)

"Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\|\mathbf{w}\|_2^2} & + C \sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

(C is a hyperparameter.)

Claim: solving this problem is equivalent to minimizing the hinge loss, with L_2 regularization. Choosing C equates to choosing λ (the regularization strength).

Solving for ζ_n (in terms of w, b, \mathbf{x}_n , and y_n)

Three possibilities:

- ▶ $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge 1$: constraint is satisfied; penalty pushes ζ_n to zero
- ▶ $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) < 1$: set $\zeta_n = 1 y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)$ to satisfy the constraint
 - ▶ If $y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) > 0$, this is a "margin" mistake, and $\zeta_n < 1$.
 - ▶ Otherwise, this is an actual mistake, and $\zeta_n \geq 1$.

Optimal Slack Values are Hinge Losses

From the last slide:

$$\zeta_n = \begin{cases} 0 & \text{if } y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge 1 \\ 1 - y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) & \text{otherwise} \end{cases}$$

Hinge loss (from A4):

$$L_n^{\text{(hinge)}}(\mathbf{w}, b) = \max\{0, 1 - y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\}$$

Optimal Slack Values are Hinge Losses

From the last slide:

$$\zeta_n = \begin{cases} 0 & \text{if } y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \ge 1 \\ 1 - y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) & \text{otherwise} \end{cases}$$

Hinge loss (from A4):

$$L_n^{(\text{hinge})}(\mathbf{w}, b) = \max\{0, 1 - y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\}$$

Unconstrained loss minimization problem:

$$\min_{\mathbf{w},b} \|\mathbf{w}\|_2^2 + \sum_{n=1}^N L_n^{(\mathsf{hinge})}(\mathbf{w},b)$$

New motivation for L_2 regularization: "small norm \Leftrightarrow large margin" (among separating hyperplanes)

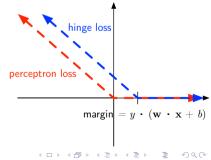
- New motivation for L_2 regularization: "small norm \Leftrightarrow large margin" (among separating hyperplanes)
- ► New motivation for hinge loss: "separate data if possible, minimize slack if you can't"

- New motivation for L_2 regularization: "small norm \Leftrightarrow large margin" (among separating hyperplanes)
- ► New motivation for hinge loss: "separate data if possible, minimize slack if you can't"
- ► New insight about perceptron:

$$L_n^{(\mathsf{perceptron})}(\mathbf{w}, b) = \max\{0, -y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\}$$
$$L_n^{(\mathsf{hinge})}(\mathbf{w}, b) = \max\{0, 1 - y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\}$$

- New motivation for L_2 regularization: "small norm \Leftrightarrow large margin" (among separating hyperplanes)
- ► New motivation for hinge loss: "separate data if possible, minimize slack if you can't"
- ► New insight about perceptron:

$$L_n^{(\mathsf{perceptron})}(\mathbf{w}, b) = \max\{0, -y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\}$$
$$L_n^{(\mathsf{hinge})}(\mathbf{w}, b) = \max\{0, 1 - y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\}$$



But why are they called "support vector machines"?

Back to the "Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\frac{1}{2}\|\mathbf{w}\|_2^2} & + C\sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

Back to the "Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\frac{1}{2}\|\mathbf{w}\|_2^2} & + C\sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

Lagrangian:

$$\min_{\mathbf{w},b,\zeta} \max_{\mathbf{\alpha} \geq \mathbf{0}} \max_{\beta \geq \mathbf{0}} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{n=1}^N \zeta_n - \beta_n \cdot \overbrace{\zeta_n}^{\text{nonnegativity}} - \underbrace{\alpha_n}^{\text{nonnegativity}} \underbrace{(y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) - 1 + \zeta_n)}^{\text{separation-with-slack constraint}}$$

Back to the "Soft-Margin SVM"

$$\begin{aligned} & \underset{\mathbf{w},b,\pmb{\zeta}}{\min} & \overbrace{\frac{1}{2}\|\mathbf{w}\|_2^2} & + C\sum_{n=1}^N \zeta_n \\ \text{s.t.} & y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) \geq 1 - \zeta_n, \forall n \\ & \zeta_n \geq 0, \forall n \end{aligned}$$

Lagrangian:

$$\min_{\mathbf{w},b,\zeta} \max_{\alpha \geq \mathbf{0}} \max_{\beta \geq \mathbf{0}} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{n=1}^N \zeta_n - \beta_n \cdot \overbrace{\zeta_n}^{\text{nonnegativity}} - \underbrace{\alpha}_{\mathbf{v}} \cdot \underbrace{(y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b) - 1 + \zeta_n)}^{\text{separation-with-slack constraint}}_{\mathbf{w},b,\zeta} \underbrace{\alpha}_{\alpha \geq \mathbf{0}} \sup_{\beta \geq \mathbf{0}} F(\mathbf{w},b,\zeta,\alpha,\beta)$$

Solve for ${\bf w}$ (in terms of ${\boldsymbol \alpha}, {\bf x}_{1:N}, y_{1:N}$)

Gradient with respect to w:

$$\nabla_{\mathbf{w}} F = \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} \cdot y_{i} \cdot \mathbf{x}_{i} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{N} \alpha_{i} \cdot y_{i} \cdot \mathbf{x}_{i}$$

Solve for ${\bf w}$ (in terms of ${\boldsymbol \alpha}, {\bf x}_{1:N}, y_{1:N}$)

Gradient with respect to w:

$$\nabla_{\mathbf{w}} F = \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} \cdot y_{i} \cdot \mathbf{x}_{i} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{N} \alpha_{i} \cdot y_{i} \cdot \mathbf{x}_{i}$$

This should immediately remind you of the kernelized perceptron, which was based on a very similar claim about the weights.

The Dual Form of Soft-Margin SVMs

After a series of mechanical steps that eliminate b and β and rearrange terms (see pp. 149–151), we get:

$$\min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \frac{\alpha_n \cdot \alpha_i \cdot y_n \cdot y_i \cdot (\mathbf{x}_n \cdot \mathbf{x}_i) - \sum_{n=1}^{N} \frac{\alpha_n}{n}$$
s.t. $0 \le \alpha_n \le C, \forall n$

The Dual Form of Soft-Margin SVMs

After a series of mechanical steps that eliminate b and β and rearrange terms (see pp. 149–151), we get:

$$\begin{aligned} & \min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{n} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot (\mathbf{x}_{n} \cdot \mathbf{x}_{i}) - \sum_{n=1}^{N} \alpha_{n} \\ & \text{s.t. } 0 \leq \alpha_{n} \leq C, \forall n \end{aligned}$$

This is a **quadratic** problem with "bound" constraints.

The Dual Form of Soft-Margin SVMs

After a series of mechanical steps that eliminate b and β and rearrange terms (see pp. 149–151), we get:

$$\begin{split} & \min_{\pmb{\alpha}} \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{N} \alpha_{\mathbf{n}} \cdot \alpha_{i} \cdot y_{n} \cdot y_{i} \cdot (\mathbf{x}_{n} \cdot \mathbf{x}_{i}) - \sum_{n=1}^{N} \alpha_{\mathbf{n}} \\ \text{s.t. } & 0 \leq \alpha_{\mathbf{n}} \leq C, \forall n \end{split}$$

This is a **quadratic** problem with "bound" constraints.

Note that now it is possible to kernelize, replacing $\mathbf{x}_n \cdot \mathbf{x}_i$ with $K(\mathbf{x}_n, \mathbf{x}_i)$.

But why are they called "support vector machines"?