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Quick Review: Kernels and Kernelized Perceptron
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Kernels
A kernel function (implicitly) computes:
K(x,v) = ¢(x) - ¢(v)

for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.
Some kernels:

linear K'"(x.v)=x-v
quadratic K%9(x v) = (1 +x-v)?
cubic K®P¢(x v)=(1+x-v)3
x,v)=(1+x-v)P

radial basis function K;bf

(
(
(

polynomial Kg°'y(
(
( =tanh(l1+x-v) (not a kernel)
(

= H?:l(l + xjv;) (for binary features)
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Perceptron Representer Theorem

At every stage of learning, there exist (a1, o, ..., an) such that

N
_ _ T
w = ap X, = X
n=1

In other words, w is always in the span of the training data.
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¢(x,) is Never Explicitly Computed!

N
predict: ¢ = sign (Z a; - K(x4,%,) + b
i=1
update: ("W o) 440

We only calculate inner products of such vectors.

)
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Kernelized Perceptron Learning Algorithm

Data: D = ((x, yn)>7]¥:11 number of epochs E
Result: weights « and bias b
initialize: @« =0 and b = 0;

forec {1,...,E} do

for n € {1,..., N}, in random order do
7 predict
g =sign (X0 i+ K (xi, %) +b);
if § # y, then
# update
Qp < O + Yn,
b+ b+ yn;
end
end
end
return o, b

Algorithm 1: KERNELIZEDPERCEPTRONTRAIN



Back to linear models, for now . ..
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Choosing a Hyperplane
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Finding a Hyperplane with a Large Margin

The preference for a decision boundary with a large margin is an example of inductive
bias.

v(w,b)

max minyy, - (w-x, +b)
w,b n

st. w-x,+b>¢e,Vn:y, =+1
W X, +b< —eg,Vn:y,=-1

The constraints ensure that w and b form a separating hyperplane; the choice of € > 0
is arbitrary.
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. 1
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Finding a Hyperplane with a Large Margin

The preference for a decision boundary with a large margin is an example of inductive
bias.

. 1
%}l? ~v(w,b)

st Y- (W-x, +b) >¢e,Vn

The constraints ensure that w and b form a separating hyperplane; the choice of ¢ > 0
is arbitrary.

The perceptron looked for some (w,b) that satisfied the constraints; now we want the
(w,b) that maximizes the margin!
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Solving for ~(w, b)
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Let x4 be one training datapoint such that w - x; +b =e¢.
Let x_ be one training datapoint such that w-x_ +b=—¢
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Solving for ~(w, b)

~v(w,b) = distance(x, [w - x + b = 0]) + distance(x_, [w - x + b = 0])
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Solving for (w, b)
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“Hard Margin SVM"

. 1
b (W, b)
st. yn - (W-x, +b) >¢e,Vn

1
min w3

)

st Yn - (W-x, +b) >¢e,Vn

-
r51V17g1§IIVVII2

st. yn - (W-x,+b) >1,Vn
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Relaxing the Constraints

Feasible set:

It's quite plausible that the feasible set will be empty.
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Relaxing the Constraints

Feasible set:
{(w,b) 1 yp - (W-x,+b) >1,Yn}

It's quite plausible that the feasible set will be empty.

Solution: add some “slack” for every instance n.

N
1 2
min —||w|3 + C E
él% 2|| 12 2 Cn

s.t. yn'(w'xn+b) >1—(n,Vn
Cn > 0,Yn
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Slack
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wx+b=0



“Soft-Margin SVM"

small slack
large margin  ~—/—

—— N
. 2
C
min w3 + nzlcn

St Yn (W Xp+b) >1—(,n
G 20,Vn

(C'is a hyperparameter.)
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“Soft-Margin SVM"

small slack
large margin

—— N
. 2
C
Inin [wllz  + nE_ICn

s.t. yn'(w'xn+b) >1—(q,Vn
Cn > 0,Yn

(C is a hyperparameter.)

Claim: solving this problem is equivalent to minimizing the hinge loss, with Lo
regularization. Choosing C' equates to choosing A (the regularization strength).

22 /40



Solving for ¢, (in terms of w, b, x,,, and ¥,,)

Three possibilities:
> Y, - (W-x, +b) > 1: constraint is satisfied; penalty pushes (, to zero
> yp - (W-x, +b) <1:set(,=1—y, - (W-X,+b) to satisfy the constraint

» If y, - (W-x, +b) >0, this is a "“margin” mistake, and (, < 1.
» Otherwise, this is an actual mistake, and (, > 1.
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Optimal Slack Values are Hinge Losses

From the last slide:

¢, = 0 if Yy - (W-x, +b) >1
"l 1—yn(W-x,+b) otherwise

Hinge loss (from A4):

Lglhinge) (W, b) — maX{O, 1—yp - (W “Xp + b)}
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Optimal Slack Values are Hinge Losses

From the last slide:

1—yn-(W-x,+0b) otherwise

Hinge loss (from A4):
Lglhinge) (W, b) — maX{O, 1—yp- (w cXp + b)}

Unconstrained loss minimization problem:

N
min w3 + > L") (w, )

n=1

<_{0 if yp - (W-x, +0) >1
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What have we learned?
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What have we learned?

» New motivation for Lo regularization: “small norm < large margin” (among
separating hyperplanes)
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What have we learned?

» New motivation for Lo regularization: “small norm < large margin” (among
separating hyperplanes)

» New motivation for hinge loss: “separate data if possible, minimize slack if you
can't”

» New insight about perceptron:

Lglperceptron) (W, b) = maX{O, — Yn - (W “Xp T+ b)}
Lglhinge) (W, b) —_ max{O, 1— UYn * (w - Xy + b)}
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What have we learned?

» New motivation for Ly regularization: “small norm < large margin” (among
separating hyperplanes)

» New motivation for hinge loss: “separate data if possible, minimize slack if you
can't”

» New insight about perceptron:

A

\ \\ \hinge loss
NN
Lipereepton) (w b) = max{0, —yn- (W X, +b)} t |\‘ S
Lq(lhmge)(w’ b) = max{0,1 -y, - (W-x, +b)} percep N . \ N

margin| =y + (W = x + b)
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But why are they called “support vector machines”?
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Back to the “Soft-Margin SVM"

. small slack
large margin

N
1 9
min of|wl +C; Cn

st. Y (WX, +b) >1—(p,Vn
Cn > 0,Vn
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Back to the “Soft-Margin SVM"

small slack

large margin A
,—1 — N
: 2
= C
min Sfwll3 + ;Cn

st. yn- (W-x, +0) >1—(,,Vn

Cn >0,Vn
Lagrangian:
nonnegativity separation-with-slack constraint
=~
mn afosz—i—CZCn Bn+ o = (Yn - (W-x,+b) —14+¢)
w,b,¢ o
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Back to the “Soft-Margin SVM"

small slack

large margin —
——

N
1 2
min —||w C§ j
Wi 2” 2+ n:1C”

s.t. yn'(w'xn+b) >1—(p,Vn
Cn > 0,Vn

Lagrangian:

nonnegativity separation-with-slack constraint

N
2+CZ<”_6”' ’Zn\ _(ln'(yn'(w'xn+b)_1+Cn)
n=1

w,b,¢ >0 3>0

min maxmax F(w. b, (, o
whe a>0 B0 (w;5,¢, @, 8)
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Solve for w (in terms of a, x1.x, y1.v)

Gradient with respect to w:

N N
VWFZW—Z%'yi'Xi = WZZ%'%'X@'
i1 i=1
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Solve for w (in terms of a, x1.x, y1.v)

Gradient with respect to w:

N N
VWF:W—Z()éj'yi'XZ‘ = w:Z(yi-yi-xi
i=1 i=1

This should immediately remind you of the kernelized perceptron, which was based on
a very similar claim about the weights.
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The Dual Form of Soft-Margin SVMs

After a series of mechanical steps that eliminate b and 3 and rearrange terms (see
pp. 149-151), we get:

1 N N N
Hgnizzan'ai'yn'yi'(Xn'xi)_zan

n=1 i=1 n=1

st. 0< o, <C,Vn
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The Dual Form of Soft-Margin SVMs

After a series of mechanical steps that eliminate b and 3 and rearrange terms (see
pp. 149-151), we get:

Mz

Qp

N N
52 E_ Qnp - C : Xn Xz

n=1 i=1 n=1

This is a quadratic problem with “bound” constraints.
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The Dual Form of Soft-Margin SVMs

After a series of mechanical steps that eliminate b and 3 and rearrange terms (see

pp. 149-151), we get:

This is a quadratic problem with “bound” constraints.

Note that now it is possible to kernelize, replacing x,, - x; with K (x,,x;).
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But why are they called “support vector machines”?
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