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Midquarter Assessment

» Assignments: considerable bug-testing
in past iterations of 446; for this
reason, | won't post solutions

> Lectures, pacing, ordering
» Project
» Textbook

» Responsiveness and office hours
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» Assignments: considerable bug-testing
in past iterations of 446; for this
reason, | won't post solutions

> Lectures, pacing, ordering
» Project
» Textbook

» Responsiveness and office hours

®:

» Assignment clarity

» Lecture slides: more definitions and
details

» Quiz sections: practice problems and
review of assignments
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Quick Review

» New view of log and squared loss functions: they are log likelihood functions!

» New view of regularized logistic/linear regression: maximize
log p(parameters) + log p(outputs | inputs)
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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

789 (&) = argmax D(x, y)
)
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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

f(BO) (x) = argmax D(z,y)
Y

Of course, we don't have D(z,y).
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Probabilistic machine learning: define a probabilistic model relating random variables
X and Y, and estimate its parameters.
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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

fB9(z) = argmax D(z, )
)

Of course, we don't have D(z,y).

Probabilistic machine learning: define a probabilistic model relating random variables
X and Y, and estimate its parameters.

In the generative version, the model defines the joint distribution p(X,Y).

What we saw earlier this week was the conditional version.
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Chain Rule of Probabilities

For any ordering of M random variables V1,..., Vj:

7VM—1)
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Chain Rule of Probabilities

For any ordering of M random variables V1,..., Vj:

p(Vi, Vo, ..., Vi) = p(Vi) - p(Va [ Vi) - p(Var | VA, oo, Vg 1)

Consider r.v.s Y (our output variable) and X1,..., X, (our d feature inputs).

d
p(Y, X1, Xo,..., Xq) =p(Y) - HP(XJ' Y, X1,..., Xj1)
j=1
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Chain Rule of Probabilities

For any ordering of M random variables V1,..., Vj:

p(‘/lav%"wVM) :p(Vl) p(‘/2 | m)p(VM ‘ V1>"'7VM—1)

M
=[] 2(Veu | Vi, Vi)
Consider r.v.s Y (our output variable) and X7,..., Xy (our d feature inputs).

d
p(YaXhXZa" . 7Xd) :p(Y) : Hp(X] | Y7X17' "’Xj_l)

d
naive assum tion
=) [ 1)

We'll stick with the convention that y € {—1,+1} but assume that “binary feature”

means values in {0, 1}.
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Naive Bayes Classification

f(BO) (x) = argmax D(x,y)
ye{—-1,+1}

fNB)(x) = argmax p(x,y)
ye{-1,+1}

d
= argmax p(Y H
ye{-1,+1} =1

iy =y)
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Naive Bayes Classification

f(BO) (x) = argmax D(x,y)

ye{—-1,+1}
FN®(x) = argmax p(x,y)
ye{-1,+1}
d
= argmax p(Y iy =y)
ye{-1,+1} jl_[l

It's called “naive” because of the assumption that each X; is conditionally
independent of the others, given Y = y.
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Naive Bayes Classification

f(BO) (x) = argmax D(x,y)

ye{-1,+1}
FM®(x) = argmax p(x,y)
ye{—1,+1}
d
= argmax p(Y H JjlY =vy)
ye{-1,+1} =1

It's called “naive” because of the assumption that each X is conditionally
independent of the others, given Y = y.

It's called “Bayes” because we can motivate it using Bayes' rule ...
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The “Bayes” Part

It's not really about the Bayes optimal classifier, or about Bayesian probability!
Motivation: we want § = argmax, p(Y =y | X =x).
Bayes' rule:

prior likelihood

—~ N ——

p(Y) p(X |Y)
p(X)
——

evidence

pY | X) =

g=argmaxp(Y =y | X =x)

y
:argmaxp(Y:y)‘p(X:x Y=y
Y p(X =x)
=argmaxp(Y =y) - p(X =x|Y =y)
y
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Naive Bayes lllustrated
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Naive Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:
p(Y =+1) ==
pY=-1)=1-n

2. For each feature X;:
» Sample X according to a Bernoulli distribution where:

p(X; =11Y =y) =0x,,
p(X;=0]Y =y)=1-0x,,
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Naive Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

p(Y =+1) =
pY=-1)=1-n7

2. For each feature X;:
» Sample X according to a Bernoulli distribution where:

p(X;=1|Y =y) =0x,,

1 + 2d parameters to estimate: m, {0x,|,1, 9Xj|71}?:1-
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Naive Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter 7, if the observations are o1, ...,0n:

count(+1) ~ H{n:on =41}
count(41) + count(—1) N

T =
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Naive Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter m, if the observations are o1, ...,0n:
. count(+1) {n:on = +1}|
I—— =
count(+1) + count(—1) N

In general, for a conditional Bernoulli for p(A | B), if the observations are
(a1,b1),...,(an,bN):

count(A=1,B=+1) |{n:a,=1Ab, = +1}|
count(B = +1) {n: b, = +1}]

count(A=1,B=—-1) |{n:a,=1Ab, = —1}|
count(B=-1) {n:b, = -1}

Oaj41 =

Oaj1 =
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Naive Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter , if the observations are o1, ...,0n:
. count(+1) {n: o0, = +1}|
m = =
count(+41) + count(—1) N

In general, for a conditional Bernoulli for p(A | B), if the observations are
(al, bl), ceey (CLN, bN)Z

count(A=1,B=+1) |{n:a,=1Ab,=+1}|

é — =

A+t count(B = +1) H{n:b, = +1}|

p _count(A=1,B=-1) Hn:a,=1Ab, =—1}|
AT T ount(B=-1) Hn:b, = —1}]

So for naive Bayes' parameters:
[{n : yn = +1}|
N

Pﬁ':
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Naive Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter , if the observations are o1, ...,0n:
. count(+1) {n: o0, = +1}|
m = =
count(+41) + count(—1) N

In general, for a conditional Bernoulli for p(A | B), if the observations are
(al, bl), ceey (CLN, bN)Z

count(A=1,B=+1) |{n:a,=1Ab,=+1}|

é — =

A+t count(B = +1) H{n:b, = +1}|

p _count(A=1,B=-1) Hn:a,=1Ab, =—1}|
AT T ount(B=-1) Hn:b, = —1}]

So for naive Bayes' parameters:
[{n : yn = +1}|

N
A~ : =yAN =1
» For each j and each y € {—1,+1}: 6;, = [{n y& y X”[‘?‘ }
n:yn =Y

Pﬁ':
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Beyond Binary Features

For X; that are not binary, there are many options for p(X; | Y = +1) and
p(X; Y =—1).

Some often-used ones are:
» For continuous X, define two Gaussian densities with parameters
<,U«Xj|+17‘7§(j\+1> and (UXj|7170§(].|_1>-
» For nonnegative integer X;, define two Poisson distributions with parameters
/\Xj|+1 and )‘Xj\fl-
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