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Midquarter Assessment

,:

I Assignments: considerable bug-testing
in past iterations of 446; for this
reason, I won’t post solutions

I Lectures, pacing, ordering

I Project

I Textbook

I Responsiveness and office hours
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reason, I won’t post solutions

I Lectures, pacing, ordering

I Project

I Textbook

I Responsiveness and office hours

/:

I Assignment clarity

I Lecture slides: more definitions and
details

I Quiz sections: practice problems and
review of assignments
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Quick Review

I New view of log and squared loss functions: they are log likelihood functions!

I New view of regularized logistic/linear regression: maximize
log p(parameters) + log p(outputs | inputs)
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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

f (BO)(x) = argmax
y
D(x, y)
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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

f (BO)(x) = argmax
y
D(x, y)

Of course, we don’t have D(x, y).

Probabilistic machine learning: define a probabilistic model relating random variables
X and Y , and estimate its parameters.

In the generative version, the model defines the joint distribution p(X,Y ).

What we saw earlier this week was the conditional version.
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Chain Rule of Probabilities

For any ordering of M random variables V1, . . . , VM :

p(V1, V2, . . . , VM ) = p(V1) · p(V2 | V1) · · · p(VM | V1, . . . , VM−1)

=

M∏
m=1

p(Vm | V1, . . . , Vm−1)

10 / 24



Chain Rule of Probabilities

For any ordering of M random variables V1, . . . , VM :

p(V1, V2, . . . , VM ) = p(V1) · p(V2 | V1) · · · p(VM | V1, . . . , VM−1)

=

M∏
m=1

p(Vm | V1, . . . , Vm−1)

Consider r.v.s Y (our output variable) and X1, . . . , Xd (our d feature inputs).
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For any ordering of M random variables V1, . . . , VM :

p(V1, V2, . . . , VM ) = p(V1) · p(V2 | V1) · · · p(VM | V1, . . . , VM−1)

=

M∏
m=1

p(Vm | V1, . . . , Vm−1)

Consider r.v.s Y (our output variable) and X1, . . . , Xd (our d feature inputs).

p(Y,X1, X2, . . . , Xd) = p(Y ) ·
d∏

j=1

p(Xj | Y,X1, . . . , Xj−1)

näıve assumption
= p(Y ) ·

d∏
j=1

p(Xj | Y )

We’ll stick with the convention that y ∈ {−1,+1} but assume that “binary feature”
means values in {0, 1}.
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Näıve Bayes Classification

f (BO)(x) = argmax
y∈{−1,+1}

D(x, y)

f (NB)(x) = argmax
y∈{−1,+1}

p(x, y)

= argmax
y∈{−1,+1}

p(Y = y) ·
d∏

j=1

p(Xj = x[j] | Y = y)
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Näıve Bayes Classification

f (BO)(x) = argmax
y∈{−1,+1}

D(x, y)

f (NB)(x) = argmax
y∈{−1,+1}

p(x, y)

= argmax
y∈{−1,+1}

p(Y = y) ·
d∏

j=1

p(Xj = x[j] | Y = y)

It’s called “näıve” because of the assumption that each Xj is conditionally
independent of the others, given Y = y.

It’s called “Bayes” because we can motivate it using Bayes’ rule . . .
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The “Bayes” Part
It’s not really about the Bayes optimal classifier, or about Bayesian probability!
Motivation: we want ŷ = argmaxy p(Y = y |X = x).
Bayes’ rule:

p(Y |X) =

prior︷ ︸︸ ︷
p(Y ) ·

likelihood︷ ︸︸ ︷
p(X | Y )

p(X)︸ ︷︷ ︸
evidence

ŷ = argmax
y

p(Y = y |X = x)

= argmax
y

p(Y = y) · p(X = x | Y = y)

p(X = x)

= argmax
y

p(Y = y) · p(X = x | Y = y)
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Näıve Bayes Illustrated
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Näıve Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

p(Y = +1) = π

p(Y = −1) = 1− π

2. For each feature Xj :
I Sample Xj according to a Bernoulli distribution where:

p(Xj = 1 | Y = y) = θXj |y

p(Xj = 0 | Y = y) = 1− θXj |y
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Näıve Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

p(Y = +1) = π

p(Y = −1) = 1− π

2. For each feature Xj :
I Sample Xj according to a Bernoulli distribution where:

p(Xj = 1 | Y = y) = θXj |y

p(Xj = 0 | Y = y) = 1− θXj |y

1 + 2d parameters to estimate: π, {θXj |+1, θXj |−1}dj=1.
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Näıve Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter π, if the observations are o1, . . . , oN :

π̂ =
count(+1)

count(+1) + count(−1)
=
|{n : on = +1}|

N
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Beyond Binary Features

For Xj that are not binary, there are many options for p(Xj | Y = +1) and
p(Xj | Y = −1).

Some often-used ones are:

I For continuous Xj , define two Gaussian densities with parameters
〈µXj |+1, σ

2
Xj |+1〉 and 〈µXj |−1, σ

2
Xj |−1〉.

I For nonnegative integer Xj , define two Poisson distributions with parameters
λXj |+1 and λXj |−1.
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