Machine Learning (CSE 446):
Probabilistic Machine Learning

Noah Smith
© 2017

University of Washington
nasmith@cs.washington.edu

November 1, 2017



Understanding MLE
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You can think of MLE as a “black box" for choosing parameter values.
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Then and Now

Before today, you knew how to do MLE:

count(+1) _ Nt
count(+1)+count(—1) = N

25:1 Yn (
N

» For a Bernoulli distribution: 7© =

» For a Gaussian distribution: [ =

Logistic regression and linear regression, respectively, generalize these so that the
parameter is itself a function of x, so that we have a conditional model of Y given
X.

» The practical difference is that the MLE doesn't have a closed form for these
models.
(So we use SGD and friends.)

and similar for estimating variance, &2).

24



A Twist!

There is a closed form for the MLE of linear regression.
To keep it simple, assume b = 0.

Let X € RV*? be the stack of training inputs and y € RY be the stack of training
outputs.

N
. 1
W = argmin Z (Y — W - xn)2

w n=1
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There is a closed form for the MLE of linear regression.
To keep it simple, assume b = 0.

Let X € RV*? be the stack of training inputs and y € RY be the stack of training

outputs.
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A Twist!

There is a closed form for the MLE of linear regression.
To keep it simple, assume b = 0.

Let X € RV*? pe the stack of training inputs and y € RN be the stack of training

outputs.
| N
W = argmin — Z (Y — W - X,)? = argmin (y — Xw)—r (y — Xw)
w N n=1 w

gradient w.r.t. w

—2XT (y —Xw) =0
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A Twist!
There is a closed form for the MLE of linear regression.

To keep it simple, assume b = 0.

Let X € RV*? pe the stack of training inputs and y € RN be the stack of training
outputs.

N
1
W = argml I Z —W-Xp) 2 = argmin (y — XW)T (y — Xw)

w

gradient w.r.t. w
N

—2XT (y —Xw) =0
W= (XTX>_1 X'y

Invertibility is fine if we have more than d linearly independent observations.
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A Twist!

There is a closed form for the MLE of linear regression.
To keep it simple, assume b = 0.

Let X € RV*? pe the stack of training inputs and y € RN be the stack of training
outputs.

N
1
W = argmin — (Yyn — W - Xn)2 = argmin (y — Xw)—r (y — Xw)
w N = w

gradient w.r.t. w
N

—2XT (y —Xw) =0

~1
W= (XTX) Xy

Invertibility is fine if we have more than d linearly independent observations. But it
costs O(d?).
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MLE is Dangerous

1—
Variance(7) = ﬂ(NW) (Note that 7 is the true probability that Y = 1!)
2
Variance(j1) = UN (Note that o2 is the true variance of the r.v.!)
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MLE is Dangerous

1—
Variance(7) = 7T(N7T) (Note that 7 is the true probability that Y = 1!)
2
Variance(1) = % (Note that o is the true variance of the r.v.!)

Recall the bias-variance tradeoff.

» Bias/approximation error: if your choice of features and probabilistic model align
to reality, MLE is great.

» Variance/estimation error: MLE tends to overfit unless you have a lot of data.
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MLE is Dangerous

1—
Variance(#) = % (Note that 7 is the true probability that ¥ = 11)
2
Variance(f1) = UN (Note that o2 is the true variance of the r.v.!)

Regularization reduces variance but increases bias.
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Adding Regularization to the Probabilistic Story

Probabilistic story:
» Forne{l,...,N}:

» Observe x,,.

» Transform it using parameters w and
b to get pw,b(y ‘ xn)'

» Sample y,, ~ pw (Y | x5).
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Adding Regularization to the Probabilistic Story

Probabilistic story with regularization:

» Use hyperparameters « to define a

Probabilistic story: prior distribution over random
» Forne{l,...,N}: variables W, po (W).
» Observe x,,. » Sample w ~ po(W).
» Transform it using parameters w and » Forn € {1’ s N};
b to get pw (Y | Xn). » Observe x,,.

| ~ Y . .
> Sample yn ~ pwp(V | Xn) » Transform it using parameters w and
b to get pw.b(Y | xp).
» Sample ¥, ~ pw (Y | X5).
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Maximum a Posteriori (MAP) Estimation

N

(W,b) = argmax log po(W) + > 108 Pw b(Yn | Xn)
w,b ‘z—’l - n—1

og prior /

log likelihood
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Maximum a Posteriori (MAP) Estimation

(W, b) = argmax log p, (W Z log pw b (Yn | Xn)
w,b v’
log prior 4
log likelihood

Typical assumption is that each weight is independent of the others.

= Hpa(WJ)
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Maximum a Posteriori (MAP) Estimation

N
(W,b) = argmax log pa(w) + > 108 pws(Yn | Xn)
w,b S—— n—1

log prior

log likelihood

Typical assumption is that each weight is independent of the others.

Pa(W) = [[pa(W))
J

Option 1: let po(WV;) be a zero-mean Gaussian distribution with standard deviation c.

|w||3 4 constant

1
log pa (W) = _Tq?|
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Maximum a Posteriori (MAP) Estimation

N
(W, b) = argmax log p,, (W Zlogpw b(Yn | Xn)
w,b %/_’ n—1

log prior
log likelihood

Typical assumption is that each weight is independent of the others.
W) = Hpa(WJ)
J

Option 1: let po(W;) be a zero-mean Gaussian distribution with standard deviation .

1

log po (W) = —TQQHWH% + constant

Option 2: let po(WV;) be a zero-location Laplace distribution with scale a.

1

log po (W) = ——||w||1 + constant
@
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Probabilistic Story: L,-Regularized Logistic Regression
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Why Go Probabilistic?

» Interpret the classifier's activation function as a (log) probability (density), which
encodes uncertainty.

» Interpret the regularizer as a (log) probability (density), which encodes uncertainty.

» Leverage theory from statistics to get a better understanding of the guarantees we
can hope for with our learning algorithms.

» Change your assumptions, turn the optimization-crank, and get a new machine
learning method.

The key to success is to tell a probabilistic story that's reasonably close to reality,
including the prior(s).
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