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Understanding MLE
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You can think of MLE as a “black box” for choosing parameter values.
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Probabilistic Stories
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Then and Now

Before today, you knew how to do MLE:

I For a Bernoulli distribution: π̂ = count(+1)
count(+1)+count(−1) =

N+

N

I For a Gaussian distribution: µ̂ =
∑N

n=1 yn
N (and similar for estimating variance, σ̂2).

Logistic regression and linear regression, respectively, generalize these so that the
parameter is itself a function of x, so that we have a conditional model of Y given
X.

I The practical difference is that the MLE doesn’t have a closed form for these
models.
(So we use SGD and friends.)
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A Twist!

There is a closed form for the MLE of linear regression.

To keep it simple, assume b = 0.

Let X ∈ RN×d be the stack of training inputs and y ∈ RN be the stack of training
outputs.

ŵ = argmin
w

1

N

N∑
n=1

(yn −w · xn)2
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To keep it simple, assume b = 0.
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A Twist!

There is a closed form for the MLE of linear regression.

To keep it simple, assume b = 0.

Let X ∈ RN×d be the stack of training inputs and y ∈ RN be the stack of training
outputs.

ŵ = argmin
w

1

N

N∑
n=1

(yn −w · xn)2 ≡ argmin
w

(y −Xw)> (y −Xw)

gradient w.r.t. w︷ ︸︸ ︷
−2X> (y −Xw) = 0

ŵ =
(
X>X

)−1
X>y

Invertibility is fine if we have more than d linearly independent observations.
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A Twist!
There is a closed form for the MLE of linear regression.

To keep it simple, assume b = 0.

Let X ∈ RN×d be the stack of training inputs and y ∈ RN be the stack of training
outputs.

ŵ = argmin
w

1

N

N∑
n=1

(yn −w · xn)2 ≡ argmin
w

(y −Xw)> (y −Xw)

gradient w.r.t. w︷ ︸︸ ︷
−2X> (y −Xw) = 0

ŵ =
(
X>X

)−1
X>y

Invertibility is fine if we have more than d linearly independent observations. But it
costs O(d3).
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MLE is Dangerous

Variance(π̂) =
π(1− π)

N
(Note that π is the true probability that Y = 1!)

Variance(µ̂) =
σ2

N
(Note that σ2 is the true variance of the r.v.!)
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MLE is Dangerous

Variance(π̂) =
π(1− π)

N
(Note that π is the true probability that Y = 1!)

Variance(µ̂) =
σ2

N
(Note that σ2 is the true variance of the r.v.!)

Recall the bias-variance tradeoff.

I Bias/approximation error: if your choice of features and probabilistic model align
to reality, MLE is great.

I Variance/estimation error: MLE tends to overfit unless you have a lot of data.

15 / 24



MLE is Dangerous

Variance(π̂) =
π(1− π)

N
(Note that π is the true probability that Y = 1!)

Variance(µ̂) =
σ2

N
(Note that σ2 is the true variance of the r.v.!)

Regularization reduces variance but increases bias.
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Adding Regularization to the Probabilistic Story

Probabilistic story:

I For n ∈ {1, . . . , N}:
I Observe xn.
I Transform it using parameters w and
b to get pw,b(Y | xn).

I Sample yn ∼ pw,b(Y | xn).
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Adding Regularization to the Probabilistic Story

Probabilistic story:

I For n ∈ {1, . . . , N}:
I Observe xn.
I Transform it using parameters w and
b to get pw,b(Y | xn).

I Sample yn ∼ pw,b(Y | xn).

Probabilistic story with regularization:

I Use hyperparameters α to define a
prior distribution over random
variables W , pα(W ).

I Sample w ∼ pα(W ).
I For n ∈ {1, . . . , N}:

I Observe xn.
I Transform it using parameters w and
b to get pw,b(Y | xn).

I Sample yn ∼ pw,b(Y | xn).
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Maximum a Posteriori (MAP) Estimation

(ŵ, b) = argmax
w,b

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw,b(yn | xn)︸ ︷︷ ︸
log likelihood
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Maximum a Posteriori (MAP) Estimation

(ŵ, b) = argmax
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log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw,b(yn | xn)︸ ︷︷ ︸
log likelihood

Typical assumption is that each weight is independent of the others.

pα(W ) =
∏
j

pα(Wj)
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Maximum a Posteriori (MAP) Estimation

(ŵ, b) = argmax
w,b

log pα(w)︸ ︷︷ ︸
log prior

+
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log likelihood

Typical assumption is that each weight is independent of the others.

pα(W ) =
∏
j

pα(Wj)

Option 1: let pα(Wj) be a zero-mean Gaussian distribution with standard deviation α.

log pα(w) = − 1

2α2
‖w‖22 + constant
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Maximum a Posteriori (MAP) Estimation

(ŵ, b) = argmax
w,b

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw,b(yn | xn)︸ ︷︷ ︸
log likelihood

Typical assumption is that each weight is independent of the others.

pα(W ) =
∏
j

pα(Wj)

Option 1: let pα(Wj) be a zero-mean Gaussian distribution with standard deviation α.

log pα(w) = − 1

2α2
‖w‖22 + constant

Option 2: let pα(Wj) be a zero-location Laplace distribution with scale α.

log pα(w) = − 1

α
‖w‖1 + constant
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Probabilistic Story: L2-Regularized Logistic Regression
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Why Go Probabilistic?

I Interpret the classifier’s activation function as a (log) probability (density), which
encodes uncertainty.

I Interpret the regularizer as a (log) probability (density), which encodes uncertainty.

I Leverage theory from statistics to get a better understanding of the guarantees we
can hope for with our learning algorithms.

I Change your assumptions, turn the optimization-crank, and get a new machine
learning method.

The key to success is to tell a probabilistic story that’s reasonably close to reality,
including the prior(s).

24 / 24


