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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

f (BO)(x) = argmax
y
D(x, y)
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Remember the Bayes optimal classifier. D is the true probability distribution over
input-output pairs.

f (BO)(x) = argmax
y
D(x, y)

= argmax
y
D(y | x) · D(x)

= argmax
y
D(y | x)

Of course, we don’t have D(y | x).

Probabilistic machine learning: define a probabilistic model relating random variables
X and Y , and estimate its parameters.
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Logistic Regression as a Probabilistic Model
Logistic regression defines pw,b(Y | X) as follows:

1. Observe the feature vector x; transform it via the activation function:

a = w · x+ b

2. Transform a into a binomial probability by passing it through the logistic function:

pw,b(Y = +1 | x) = 1

1 + exp−a
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3. Sample Y from pw,b(Y | x).
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Logistic Regression Probabilities

Probability that Y = +1 given x:

1

1 + exp− (w · x+ b)

=
1

1 + exp−y (w · x+ b)

Approaches 1 as w · x+ b→ +∞.
Never gets to 0.

Probability that Y = −1 given x:

1− 1

1 + exp− (w · x+ b)

=
1

1 + exp (w · x+ b)

=
1

1 + exp−y (w · x+ b)

Approaches 1 as w · x+ b→ −∞.
Never gets to 0.
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Maximum Likelihood Estimation

The principle of maximum likelihood estimation is to choose parameters (today, w and
b) that make the training data as likely as possible.
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Maximum Likelihood Estimation
The principle of maximum likelihood estimation is to choose parameters (today, w and
b) that make the training data as likely as possible.
Mathematically:

(ŵ, b̂) = argmax
w,b

N∏
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pw,b(yn | xn)

= argmax
w,b

log

N∏
n=1

pw,b(yn | xn)

= argmax
w,b

N∑
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Logistic Regression-MLE is (Unregularized) Log Loss Minimization!

argmin
w,b

N∑
n=1

− log pw,b(yn | xn) ≡ argmin
w,b

1

N

N∑
n=1

LogLossn(w, b)
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Linear Regression as a Probabilistic Model

Linear regression defines pw,b(Y | X) as follows:

1. Observe the feature vector x; transform it via the activation function:

µ = w · x+ b

2. Let µ be the mean of a normal distribution and define the density:

pw,b(Y | x) =
1

σ
√
2π

exp−(Y − µ)2

2σ2

3. Sample Y from pw,b(Y | x).
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Linear Regression-MLE is (Unregularized) Squared Loss Minimization!

argmin
w,b

N∑
n=1

− log pw,b(yn | xn) ≡ argmin
w,b

1

N

N∑
n=1

(yn − (w · xn + b))2︸ ︷︷ ︸
SquaredLossn(w,b)
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Linear Regression-MLE is (Unregularized) Squared Loss Minimization!

argmin
w,b

N∑
n=1

− log pw,b(yn | xn) ≡ argmin
w,b

1

N

N∑
n=1

(yn − (w · xn + b))2︸ ︷︷ ︸
SquaredLossn(w,b)

Where did the variance go?
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