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Estimating Performance

We do this for two reasons:

1. To select hyperparameter values (tuning)

2. To estimate a final classifier’s quality on D (testing)

Remember that Â, P̂, R̂, and F̂1 are all estimates of the classifier’s quality under the
true data distribution D.

I Estimates are noisy!
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Cross-Validation for Hyperparameter Tuning

Data: training data D, trainable classifier family F , set of possible hyperparameter
settings α1, . . . , αH

Result: hyperparameter setting
partition D randomly into equal-sized folds, D1, . . . , DK ;
for h ∈ {1, . . . ,H} do

for k ∈ {1, . . . ,K} do
train f (h,k) ∈ F on D \Dk with hyperparameter setting αh;

Â(h,k) = Â(f (h,k)) (or other quality score) estimated on Dk;

end

Âh = 1
K

∑K
k=1 Â

(h,k);

end

return α(argmaxh Âh) (or f ∈ F trained on α(argmaxh Âh));
Algorithm 1: CrossValidateToTune
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Cross-Validation for Testing

Data: data D, trainable classifier family F
Result: accuracy estimate
partition D randomly into equal-sized folds, D1, . . . , DK ;
for k ∈ {1, . . . ,K} do

train fk ∈ F on D \Dk (possibly using CrossValidateToTune to set
hyperparameters);

Âk = Â(fk) (or other quality score) estimated on Dk;

end

Â = 1
K

∑K
k=1 Â

k;

return Â;
Algorithm 2: CrossValidateToTest
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Careful!

If you repeatedly run CrossValidateToTest on a single dataset D, you risk
overfitting to D and getting a bad estimate.
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Statistical Significance

Suppose we have two classifiers, f1 and f2.
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Statistical Significance

Suppose we have two classifiers, f1 and f2.

Is f1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if Â1 � Â2, we
are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

One view: how (im)probable is the observed difference, given H0 = true?

Caution: statistical significance is neither necessary nor sufficient for research
significance or interestingness!
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A Hypothesis Test for Text Classifiers
McNemar (1947)

1. The null hypothesis: A1 = A2

2. Pick significance level α, an “acceptably” high probability of incorrectly rejecting
H0.

3. Calculate the test statistic, k (explained in the next slide).

4. Calculate the probability of a more extreme value of k, assuming H0 is true; this
is the p-value.

5. Reject the null hypothesis if the p-value is less than α.

The p-value is p(this observation | H0 is true), not the other way around!
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McNemar’s Test: Details

Assumptions: independent (test) samples and binary measurements. Count test set
error patterns:

f1 f1
is incorrect is correct

f2 is incorrect c00 c10
f2 is correct c01 c11 m · Â2

m · Â1

If A1 = A2, then c01 and c10 are each distributed according to Binomial(c01 + c10,
1
2).

test statistic k = min{c01, c10}

p-value =
1

2c01+c10−1

k∑
j=0

(
c01 + c10

j

)
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Other Tests

Different tests make different assumptions.

Sometimes we calculate an interval that would be “unsurprising” under H0 and test
whether a test statistic falls in that interval (e.g., t-test and Wald test).

In many cases, there is no closed form for estimating p-values, so we use random
approximations (e.g., permutation test and paired bootstrap test).

If you do lots of tests, you need to correct for that! The first thing to learn is the
Bonferroni correction.

Read lots more in Daume (2017), chapter 5.7.
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Bias-Variance Tradeoff

Let F denote the set of all possible classifiers under consideration. (E.g., all linear
classifiers for the set of features we have chosen.)
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Bias-Variance Tradeoff

Let F denote the set of all possible classifiers under consideration. (E.g., all linear
classifiers for the set of features we have chosen.)

ε(f) = ε(f)− min
f∗∈F

ε(f∗)︸ ︷︷ ︸
estimation error

+ min
f∗∈F

ε(f∗)︸ ︷︷ ︸
approximation error
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Bias-Variance Tradeoff

Let F denote the set of all possible classifiers under consideration. (E.g., all linear
classifiers for the set of features we have chosen.)

ε(f) = ε(f)− min
f∗∈F

ε(f∗)︸ ︷︷ ︸
estimation error

+ min
f∗∈F

ε(f∗)︸ ︷︷ ︸
approximation error

We could maybe correct estimation error by getting more training data. More
generally, we often refer to estimation error as variance.

We could maybe correct approximation error by choosing a better F . More generally,
we often refer to approximation error as bias.
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