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Outline of CSE 446
We’ve already covered stuff in blue!

I Problem formulations: classification, regression

I Supervised techniques: decision trees, nearest neighbors, perceptron, linear
models, probabilistic models, neural networks, kernel methods

I Unsupervised techniques: clustering, linear dimensionality reduction

I “Meta-techniques”: ensembles, expectation-maximization

I Understanding ML: limits of learning, practical issues, bias & fairness

I Recurring themes: (stochastic) gradient descent, bullshit detection
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Today: (More) Best Practices

You already know:

I Separating training and test data

I Hyperparameter tuning on development data

Understanding machine learning is partly about knowing algorithms and partly about
the art of mapping abstract problems to learning tasks.
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Features Matter
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Irrelevant Features

I Decision trees (not too deep)?

I K-nearest neighbors?

I Perceptron?
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Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors? /
I Perceptron? ,

What about redundant features φj and φj′ such that φj ≈ φj′?
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Technique: Feature Pruning

If a binary feature is present in too small or too large a fraction of D, remove it.
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Technique: Feature Pruning

If a binary feature is present in too small or too large a fraction of D, remove it.

Example: φ(x) = Jthe word the occurs in document xK

Generalization: if a feature has variance (in D) lower than some threshhold value,
remove it.
Note: in lecture, I mistakenly said to remove high-variance features. Mea culpa.

sample mean(φ;D) =
1

N

N∑
n=1

φ(xn) (call it “φ̄”)

sample variance(φ;D) =
1

N − 1

N∑
n=1

(
φ(xn)− φ̄

)2
(call it “Var(φ)”)
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Technique: Feature Normalization

Center a feature:

φ(x)→ φ(x)− φ̄

(This was a required step for principal components analysis!)

Scale a feature. Two choices:

φ(x)→ φ(x)√
Var(φ)

“variance scaling”

φ(x)→ φ(x)

max
n
|φ(xn)|

“absolute scaling”
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φ(x)→ φ(x)− φ̄

(This was a required step for principal components analysis!)

Scale a feature. Two choices:

φ(x)→ φ(x)√
Var(φ)

“variance scaling”

φ(x)→ φ(x)

max
n
|φ(xn)|

“absolute scaling”

Remember that you’ll need to normalize test data before you test!
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Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.
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Rotating the view.
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Evaluation
Accuracy:

A(f) =
∑
x

D(x, f(x))

=
∑
x,y

D(x, y) ·
{

1 if f(x) = y
0 otherwise

=
∑
x,y

D(x, y) · Jf(x) = yK

where D is the true distribution over data. Error is 1−A; earlier we denoted error
“ε(f).”
This is estimated using a test dataset 〈x1, y2〉, . . . , 〈xN ′ , yN ′〉:

Â(f) =
1

N ′

N ′∑
i=1

Jf(xi) = yiK
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Issues with Test-Set Accuracy

I Class imbalance: if D(∗, not spam) = 0.99, then you can get Â ≈ 0.99 by always
guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.
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Evaluation in the Two-Class Case
Suppose we have two classes, and one of them, t, is a “target.”

I E.g., given a query, find relevant documents.

Precision and recall encode the goals of returning a “pure” set of targeted instances
and capturing all of them.

actually in 
the target 

class;
y = t

believed to be 
in the target 

class;
f(x) = t

correctly 
labeled 

as t

A BC

P̂(f) =
|C|
|B|

=
|A ∩B|
|B|

R̂(f) =
|C|
|A|

=
|A ∩B|
|A|

F̂1(f) = 2 · P̂ · R̂
P̂ + R̂
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Another View: Contingency Table

y = t y 6= t

f(x) = t C (true positives) B \ C (false positives) B

f(x) 6= t A \ C (false negatives) (true negatives)

A
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