
Machine Learning (CSE 446):
Practical Issues

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

October 18, 2017

1 / 39

scary words

2 / 39

Outline of CSE 446
We’ve already covered stuff in blue!

I Problem formulations: classification, regression

I Supervised techniques: decision trees, nearest neighbors, perceptron, linear
models, probabilistic models, neural networks, kernel methods

I Unsupervised techniques: clustering, linear dimensionality reduction

I “Meta-techniques”: ensembles, expectation-maximization

I Understanding ML: limits of learning, practical issues, bias & fairness

I Recurring themes: (stochastic) gradient descent, bullshit detection

3 / 39

Today: (More) Best Practices

You already know:

I Separating training and test data

I Hyperparameter tuning on development data

Understanding machine learning is partly about knowing algorithms and partly about
the art of mapping abstract problems to learning tasks.

4 / 39

Features Matter

5 / 39

Features Matter

6 / 39

Features Matter

7 / 39

Features Matter

8 / 39

Irrelevant Features

I Decision trees (not too deep)?

I K-nearest neighbors?

I Perceptron?

9 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?

I K-nearest neighbors?

I Perceptron?

10 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?

I K-nearest neighbors?

I Perceptron?

11 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors?

I Perceptron?

12 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors?

I Perceptron?

13 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors? /

I Perceptron?

14 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors? /
I Perceptron?

15 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors? /
I Perceptron? ,

16 / 39

Irrelevant Features

One irrelevant feature isn’t a big deal; what we’re worried about is when irrelevant
features outnumber useful ones!

I Decision trees (not too deep)?
Somewhat protected, but beware spurious correlations!

I K-nearest neighbors? /
I Perceptron? ,

What about redundant features φj and φj′ such that φj ≈ φj′?

17 / 39

Technique: Feature Pruning

If a binary feature is present in too small or too large a fraction of D, remove it.

18 / 39

Technique: Feature Pruning

If a binary feature is present in too small or too large a fraction of D, remove it.

Example: φ(x) = Jthe word the occurs in document xK

19 / 39

Technique: Feature Pruning

If a binary feature is present in too small or too large a fraction of D, remove it.

Example: φ(x) = Jthe word the occurs in document xK

Generalization: if a feature has variance (in D) lower than some threshhold value,
remove it.
Note: in lecture, I mistakenly said to remove high-variance features. Mea culpa.

sample mean(φ;D) =
1

N

N∑
n=1

φ(xn) (call it “φ̄”)

sample variance(φ;D) =
1

N − 1

N∑
n=1

(
φ(xn)− φ̄

)2
(call it “Var(φ)”)

20 / 39

Technique: Feature Normalization

Center a feature:

φ(x)→ φ(x)− φ̄

(This was a required step for principal components analysis!)

Scale a feature. Two choices:

φ(x)→ φ(x)√
Var(φ)

“variance scaling”

φ(x)→ φ(x)

max
n
|φ(xn)|

“absolute scaling”

21 / 39

Technique: Feature Normalization

Center a feature:

φ(x)→ φ(x)− φ̄

(This was a required step for principal components analysis!)

Scale a feature. Two choices:

φ(x)→ φ(x)√
Var(φ)

“variance scaling”

φ(x)→ φ(x)

max
n
|φ(xn)|

“absolute scaling”

Remember that you’ll need to normalize test data before you test!

22 / 39

Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.

23 / 39

Techniques: Creating New Features
1. Consider two binary features, φj and φj′ . A new conjunction feature can be

defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

The classic “xor” problem: these points are not linearly separable.

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)
Example: φ(x) is the count of the word cool in document x.

24 / 39

Techniques: Creating New Features
1. Consider two binary features, φj and φj′ . A new conjunction feature can be

defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

Define x[3] = x[1] ∧ x[2].

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)
Example: φ(x) is the count of the word cool in document x.

25 / 39

Techniques: Creating New Features
1. Consider two binary features, φj and φj′ . A new conjunction feature can be

defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

Rotating the view.

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)
Example: φ(x) is the count of the word cool in document x.

26 / 39

Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.

27 / 39

Techniques: Creating New Features
1. Consider two binary features, φj and φj′ . A new conjunction feature can be

defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

2 · x[1] + 2 · x[2]− 4 · x[3]− 1 = 0

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)
Example: φ(x) is the count of the word cool in document x.

28 / 39

Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

Generalization: take the product of two features.

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.

29 / 39

Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

Generalization: take the product of two features.

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.

30 / 39

Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

Generalization: take the product of two features.

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.
This is one view of what decision trees are doing!

I Every leaf’s path (from root) is a conjunction feature.
I Why not build decision trees, extract the features and toss them into the perceptron?

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.

31 / 39

Techniques: Creating New Features

1. Consider two binary features, φj and φj′ . A new conjunction feature can be
defined by:

φj∧j′(x) = φj(x) ∧ φj′(x)

Generalization: take the product of two features.

2. Even more generally, we can create conjunctions (or products) using as many
features as we’d like.
This is one view of what decision trees are doing!

I Every leaf’s path (from root) is a conjunction feature.
I Why not build decision trees, extract the features and toss them into the perceptron?

3. Transformations on features can be useful. For example,

φ(x)→ sign(φ(x)) · log (1 + |φ(x)|)

Example: φ(x) is the count of the word cool in document x.

32 / 39

Evaluation
Accuracy:

A(f) =
∑
x

D(x, f(x))

=
∑
x,y

D(x, y) ·
{

1 if f(x) = y
0 otherwise

=
∑
x,y

D(x, y) · Jf(x) = yK

where D is the true distribution over data. Error is 1−A; earlier we denoted error
“ε(f).”
This is estimated using a test dataset 〈x1, y2〉, . . . , 〈xN ′ , yN ′〉:

Â(f) =
1

N ′

N ′∑
i=1

Jf(xi) = yiK

33 / 39

Issues with Test-Set Accuracy

I Class imbalance: if D(∗, not spam) = 0.99, then you can get Â ≈ 0.99 by always
guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

34 / 39

Issues with Test-Set Accuracy

I Class imbalance: if D(∗, not spam) = 0.99, then you can get Â ≈ 0.99 by always
guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

35 / 39

Issues with Test-Set Accuracy

I Class imbalance: if D(∗, not spam) = 0.99, then you can get Â ≈ 0.99 by always
guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

36 / 39

Issues with Test-Set Accuracy

I Class imbalance: if D(∗, not spam) = 0.99, then you can get Â ≈ 0.99 by always
guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

37 / 39

Evaluation in the Two-Class Case
Suppose we have two classes, and one of them, t, is a “target.”

I E.g., given a query, find relevant documents.

Precision and recall encode the goals of returning a “pure” set of targeted instances
and capturing all of them.

actually in
the target

class;
y = t

believed to be
in the target

class;
f(x) = t

correctly
labeled

as t

A BC

P̂(f) =
|C|
|B|

=
|A ∩B|
|B|

R̂(f) =
|C|
|A|

=
|A ∩B|
|A|

F̂1(f) = 2 · P̂ · R̂
P̂ + R̂

38 / 39

Another View: Contingency Table

y = t y 6= t

f(x) = t C (true positives) B \ C (false positives) B

f(x) 6= t A \ C (false negatives) (true negatives)

A

39 / 39

