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Notation

Let V = (V1, V5, ..., V) be a collection of random variables (not necessarily a
sequence).

Val(V') will denote the values of a r.v. V.
V' ; denotes a subset of the r.v.s V' with indices ¢ € I.
Vo =V\V;

Recall:
» p(V) = Hle p(Vi | Vi,...,Vi—1) (always true, for any ordering)
> p(V[,VJ | VK) :p(V[ ’ VK) 'p(VJ | VK) if and only if VilV; | Vi
(conditional independence)

» p(Vi=wv1) =3 eva.,)P(Vi=v1, V- =v-) (marginalization)
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Factor Graphs

Two kinds of vertices:
» Random variables (denoted by circles, “V;")

» Factors (denoted by squares, “f;")

The graph is bipartite; every edge connects some variable to some factor. Let
I; C{1,...,/} be the set of variables f; is connected to.

Factor f; defines a map Val(V1,) — Rxo.

The graph and factors define a probability distribution:

p(V =v) x Hfj(vlj)
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Example
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Two Kinds of Factors

Conditional probability tables. E.g., if I; = {1,2,3}:
fi(vi,v2,v3) = p(Va = vz | Vi = vy, Va = vg)

Lead to Bayesian networks (with some constraints).

Potential functions (arbitrary nonnegative values).
Lead to Markov random fields (a.k.a. Markov networks).
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Naive Bayes as a Bayesian Network and a Factor Graph
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Yucky Bayesian Network
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Sinus inflammation is caused by flu, but also by allergies.

Runny nose and headache are both caused by sinus inflammation.
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Yucky Factor Graph

Allergies

Runny Headache
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Yucky Factor Graph
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Yucky Factor Graph
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p(z,a,s,r, h) = f[(l) : fA(a) : fS,I,A(S,Z,CL) ) R,S(T, 3) : fH7S(h7 3)
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Contagious Markov Random Field

@“

Independencies: ALC' | B, D; B1D|AC, -A1C; -B1D
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Contagious Factor Graph

@

A | B| fas B|C| feec C D | fep D | A| fpa

00 00 0 0 00

(o[ 1| | (o1 | 0o 1| | (o1 |

1|0 1|0 10 1|0

1)1 1|1 i 1)1
p(a,b,c,d) =

fas(a,b)- fpc(b,c)- fep(c,d)- fp,ald,a)
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Assignment Probabilities: Examples

A[B] fas B[ C] fso C D] fob DA foa
00 30 00| 100 0 0] 1 00| 100
01| 5 01| 1 0 1| 100 01| 1
10| 1 1[0 1 1 0| 100 10| 1
1]1] 10 1|1 [ 100 111 1|1 [ 100
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Assignment Probabilities: Examples

Brook
A| B | fan B | C| fee C D | fep D | A| fpa
00 30 0| 0| 100 0 0 1 0| 0| 100
[0[1] 5 [0[1] 1 0 1| 100 [o1] 1
110 1 1|0 1 1 0 [ 100 1[0 1
1)1 10 1|1 100 i 1 1|1 100

Z Z Z Z fA,B(a’/vb/) ) fB,C(b/’C/) : fC,D(Clvd/) : fD,A(d/’a/)

ade Ve e de
Val(A) Val(B) Val(C) Val(D)

= 7,201,840
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Assignment Probabilities: Examples

A| B | fas B | C| fec C D| fep D | A| fpa
0|0 0|0 | 100 0 0 1 010

o1 |HEN o|1] 1 0 1] 100 0|1] 1

1o 1 1]0] 1 N 100 | 1]o0] 1

1[1] 10 | 1]1 I 1[1] 100

5,000,000

A=0,B=1,0=1,D=0) = 22" 1
P4 =0, O =1.D=0) =70 810

0.69
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Assignment Probabilities: Examples

- e
=
o

A| B | fans B | C| fec D D | A| fpa
0|0 30 010 100 0 010 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 0 100 1 0
1 1 10 1 1 100 1 1 1 1 1 100
(A=1,B=1,0=0,D=0) = —— _ ~0.0000014
pa=n o=t = = = 01,840
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Structure and Independence

Bayesian networks:

» A variable is conditionally independent of its non-descendants given its parents.

Markov networks:

» Conditional independence derived from “Markov blanket” and separation
properties.

Local configurations can be used to check all conditional independence questions;
almost no need to look at the values in the factors!
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Independence “Spectrum”

l
[T/
=1

everything is independent
minimal expressive power

fewer parameters

fv(V)

everything can be interdependent

arbitrary expressive power

more parameters
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Nothing past this point will be on the exam.
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Operations on Factors: Multiplication

Given two factors fry and fy, we can create a new “product” factor such that:

fouv(wUv) = fu(u) - fv(v)

for all w € Val(U) and all v € Val(V).

10
1,000

A|B|C| fasc
0|0 |0/ 3000
A B fan EGIEG 001 30
00 30 0 0| 100 0(1|0 5
0|1 5 0 1 1 = 0|11 500
110 1 1 0 1 1/0]0 100
1)1 10 1 1 [ 100 1(0]1 1
1(1]0
1|11
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Operations on Factors: Multiplication

Given two factors fyy and fy, we can create a new “product” factor such that:

for all w € Val(U) and all v € Val(V).

fanB

30

== ool x
~lol~lolw

10

This might remind you of a join operation on a database.

fuov(wUwv) = fu(u) - fv(v)

fBc

100

I E=E=]s"]

—lollolQ

100

A|B|C| fasc
0 (0|0 ]| 3000
0|01 30
0(1|0 5
0|11 500
1|00 100
1]0]|1 1
1]1]0 10

1 (1] 1/ 1,000
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Operations on Factors: Multiplication

Given two factors fyy and fy, we can create a new “product” factor such that:

Jouv(wUv) = fu(u) - fv(v)
for all w € Val(U) and all v € Val(V).

fapc
3,000
30

fBc
100

fanB
30

500
100

—|=olo|x
~lol~lolw
I E=E=]s"]
—lollolQ

10 100

10
1,000

R RlRrlolooo

— ~lolol~lrlooWw
= olr|lolrlol~lo
o

What happens if you multiply out all the factors in a factor graph?
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Operations on Factors: Maximization

Given a factor fyy and a variable V' & U, we can transform fyy into fyr by:

for all w € Val(U).

ook

= or o

fac

3,000

500
100

1,000

[selieelivellve)

(=R ]

—

fU(u) = maxX fU’V(u, U)
veVal(V)

A|B|C| fasc
0| 0|0/ 3000

0|01 30

0(1(0 5

= max 0|11 500
B 100 100

1(0]1 1

1(1]0 10
1(1]1 1,000
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Operations on Factors: Marginalization

Given a factor fyy and a variable V' & U, we can transform fy7y into fyr by:

for all w € Val(U).

fac

3,000 4 5

30 + 500

100 + 10

ik o ol

o = o)

1+ 1,000

fuw)= > fuv(uv)

veVal(V)

A|B|C| fasc
0| 0|0/ 3000
0|0 |1 30
0|10 5
0|11 500
1(0]0 100
1101 1
1|11]0 10
1(1]1 1,000
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Operations on Factors: Marginalization

Given a factor fyy and a variable V' & U, we can transform fyy into fyr by:

fuw) = > fov(uv)

veVal(V)
for all uw € Val(U).
A| B |C| fasc
0|0 |0 3000
A|C fac 0|01 30
0| 0 |3000+5 0|10 5
0| 1 | 30+ 500 - E 0|11 500
1|0 | 100+ 10 B 1100 100
1|11+ 1,000 1101 1
1110 10
11| 1] 1,000

If you multiply out all the factors in a factor graph, then sum out each variable, one by
one, until none are left, what do you get?
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Factors are like numbers.

» Products are commutative: f1 - fo = fo- f1

26 / 64



Factors are like numbers.

» Products are commutative: f1 - fo = fo- f1
» Products are associative: (f1-f2)- fs = fi1-(f2- f3)
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Factors are like numbers.

» Products are commutative: f1 - fo = fo- f1
» Products are associative: (f1-f2)- fs = fi1-(f2- f3)

» Sums are commutative: ZZf = ZZf
X Y Y X
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Factors are like numbers.

» Products are commutative: f1 - fo = fo- f1
» Products are associative: (f1-f2)- fs = fi1-(f2- f3)
» Sums are commutative: ZZf = ZZf
X Y Y X
| 4

Maximizations are commutative: max m&xf = max m)?xf
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Factors are like numbers.

v

Products are commutative: f1- fo = fo- f1
Products are associative: (f1- f2)- fs = f1-(f2- f3)

Sums are commutative: ZZf = ZZf
X Y Y X

Maximizations are commutative: max m&xf = max m)?xf

v

v

v

v

Multiplication distributes over marginalization and maximization:

Y (fr-fo)=fi-> fo
X X

max(fi - f2) = f1 - max fo

(assuming X is not in the scope of f1).
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Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 UU.

Three inference problems, all given O = o ...
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Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 UU.

Three inference problems, all given O = o ...

» Marginal inference: what is the marginal distribution over Q C U? (p(Q | o),
marginalizing out the rest.)

32 /64



Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 U U.

Three inference problems, all given O =0 ...

» Marginal inference: what is the marginal distribution over Q C U? (p(Q | o),
marginalizing out the rest.)

» Related: draw samples from that distribution.
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Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 U U.

Three inference problems, all given O =0 ...

» Marginal inference: what is the marginal distribution over Q C U? (p(Q | o),
marginalizing out the rest.)

» Related: draw samples from that distribution.

» Most probable explanation (MPE): what is the most probable assignment to
U? (argmax, p(u | 0))
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Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 UU.

Three inference problems, all given O = o ...

» Marginal inference: what is the marginal distribution over Q C U? (p(Q | o),
marginalizing out the rest.)

» Related: draw samples from that distribution.
» Most probable explanation (MPE): what is the most probable assignment to
U? (argmax, p(u | 0))
» Related: what is the most dangerous assignment to U?
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Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 UU.

Three inference problems, all given O = o ...

» Marginal inference: what is the marginal distribution over Q C U? (p(Q | o),
marginalizing out the rest.)

» Related: draw samples from that distribution.
» Most probable explanation (MPE): what is the most probable assignment to
U? (argmax, p(u | 0))
» Related: what is the most dangerous assignment to U?
» Maximum a posteriori (MAP): what is the most probable assignment to
Q CU? (argmax,p(q | 0))
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Inference

Most general definition: “reason about some variables, optionally given values of some
others.” Let O be the observed variables and U be the unobserved ones; V =0 U U.

Three inference problems, all given O = o ...

» Marginal inference: what is the marginal distribution over Q C U? (p(Q | o),
marginalizing out the rest.)

» Related: draw samples from that distribution.
» Most probable explanation (MPE): what is the most probable assignment to
U? (argmax, p(u | 0))
> Related: what is the most dangerous assignment to U?
» Maximum a posteriori (MAP): what is the most probable assignment to
Q C U? (argmax, p(q | 0))
» Related: what values of @ have the lowest expected cost?
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Lecture ended here; keep reading if you're interested!
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Marginal Inference

Given a factor graph with variables V, find the marginal distribution over some
Vi eV, p(V;).

Simple chain example, focusing on i = 4:

Vi

fvi

Va

v Va

0

fveva

st,VA

== o|o|=

1
0
1

== ool &

ool

== ool

—=lo|lrlol =
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Observations

» If we had a single fy,, we could easily renormalize it to get p(V4).
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Observations
» If we had a single fy,, we could easily renormalize it to get p(V4).

» Correct: fV4 = ZZZfVl : fVl,V2 : fVQ,Vg : fV3,V4

Vi Vo V3
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Observations

» If we had a single fy,, we could easily renormalize it to get p(V4).
> Correct: fu, =Y > > fui- fuve - fvovs - fusva
Vi Vo W3
» But that multiplied-out factor would have H |Val(V;)| values!

7
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Observations

» If we had a single fy,, we could easily renormalize it to get p(V4).

» Correct: fV4 = ZZZfVl : fVl,Vz : fVQ,V3 : fV3,V4

Vi Vo W3
» But that multiplied-out factor would have H |Val(V;)| values!

7

» Reorganize calculations:

ZZZfVl e fwevs - v

Vi Vo V3

= ZfV3,V4 . ZfVQ,Vg, : val,VQ : fV1
V3 1%} 1%
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Marginal Inference

fVl,Vz

Vi | Vs Vo | Vs | fwavs Vs | Vi fwuva
Vit 00 0o 00
0 | 01 01 01
1| 1[0 1[0 1[0
1)1 1)1 1)1

ZZval AR ARV AR A

i Vo V3

= Zng,V4 ’ ZfV2,V3 : ZthVZ v
V3 Vo Vi
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Marginal Inference

Va V5| fvavs Vi | Vi fwv
Va | fv 0 0 00
0 0 1 0| 1
L 1 0 1]0
1 1 1 1

ZZZfV1 : fV1,V2 . sz,Vg . ng,VZ;

Vi Vo V3

= ZfV3,V4 . ZfVQ,Vg : sz
V3 Va
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Marginal Inference

Vi | Va fww
V5| fw 0ol o
0 01
1 1 0
1 1

ZZval ' fV17V2 : fV27V3 . fV3,V4

i Vo V3

= Z AT RATS
V3
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Marginal Inference

ZZZfV1 : fVl,Vz : sz,V3 : fV3,V2;

i Vs

= fV4

V3

fva
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Variable Elimination

Given a factor graph with factors f, eliminate variable V.

1. Let f 4, C f be the factors connected to V/
2. Let freep = S\ Fetim be the rest

3. Letfnewzz H f

|4 fe.felim
4. Return freep U{frew}

Uses the graph structure to avoid exponential blowup; this is an example of dynamic
programming.
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Marginal Inference by Variable Elimination (No Evidence)

Given a factor graph with variables V' and factors f, find the marginal distribution
over some V., C V.

1. Order the variables in V' \ V jep,.
2. Foreach V € V' \ Vieep:

» Eliminate V; i.e., remove factors connected to V' and replace with the derived f ¢, .

The resulting factor graph is proportional to p(V jeep ).
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Marginal Inference by Variable Elimination (No Evidence)

Given a factor graph with variables V' and factors f, find the marginal distribution
over some V., C V.

1. Order the variables in V' \ V jep.
The ordering can make a huge difference!

2. Foreach V € V' \ Vit

» Eliminate V; i.e., remove factors connected to V' and replace with the derived f,cq.

The resulting factor graph is proportional to p(V jeep)-
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A Less Good Ordering

0,0, 0.0

ZZZfVI : fV17V2 : sz,Vg, . fV3,V4

i Vo V3

=> fu- (Z fviv (Z fva,vs - ng,V4>>
Vi v Vs
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A Less Good Ordering

DD fvve few - v

Vi Vo V3

= ZfV1 : (Z fV1,V2 . (Z fVQ,Vg, . fV3,V4>)
i Va Vs

= val : (Z fV1,V2 : fVQ,V4)
\%1 Va
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What About Evidence?

Original problem: given O = o, what is the marginal distribution over @ C U? (l.e.,

p(@Q@ |0 =o0).)
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What About Evidence?

Original problem: given O = o, what is the marginal distribution over @ C U? (l.e.,

p(Q 10 =o0).)

This adds a step at the beginning: reduce factors to “respect the evidence.”
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What About Evidence?

Original problem: given O = o, what is the marginal distribution over @ C U? (l.e.,

(@[O0 =o))

This adds a step at the beginning: reduce factors to “respect the evidence.”

This will remind you of a select ...where operation in a database.
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Marginal Inference

Suppose V7 is observed to take value 1.

fviva

Jvava

—==o o=

ol o

—=—o o

o~ o

fvava

—=l-lo o

ol o=
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Marginal Inference

Suppose V7 is observed to take value 1.

Vi fn

Jvava

fvava

—=—o o

=lolm o

=lmlo o

ol o=
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Marginal Inference

Suppose Vj is observed to take value 1.

Voo Va| fun Vs | Va| fwv
Vi fv; 0 0 o]0
\ 0 1 0|1
o - o
1 1 1 1

Note that fy; is now a constant; since we renormalize at the end, we can ignore it.

Observed nodes may create a “separation” between variables of interest and some
factors.
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Marginal Inference by Variable Elimination with Evidence

Given a factor graph with variables V' and factors f, and given O = o (where
O C V), find the marginal distribution over Q CU =V \ O.

1. Reduce factors connected to O to respect the evidence.

2. Order the variables in U \ Q.
3. Foreach V e U\ Q:

» Eliminate V; i.e., remove factors connected to V' and replace with the derived f,cq.

The resulting factor graph is proportional to p(Q | O = o).
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Remarks on Computational Complexity

In general, denser graphs are more expensive.

Runtime and space depend on the size of the original and intermediate factors. (This
is why ordering matters so much.)

Finding the best ordering is NP-hard.
Certain graphical structures allow inference in linear time with respect to the size of
the original factors.

> Bayesian networks: polytrees

» Markov networks: chordal graphs
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MPE Inference

argmax p(U =u | O = o)
ueVal(U)
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MPE Inference

argmax p(U =u | O = o)
ueVal(U)

Variable elimination and exact inference are identical to the marginal case!
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MPE Inference

argmax p(U =u | O = 0)
ueVal(U)

Variable elimination and exact inference are identical to the marginal case!

Just replace each sum operation with a max operation, and add bookkeeping to
recover the most probable assignment.
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Rocket Science: True MAP

Given a factor graph with variables V' and factors f, and given O = o (where
O C V), find the most probable assignment of Q CU =V \ O.

Let R=U\ Q.

argmax p(Q =¢q | O = o)
qeVal(Q)

= argmax Z p(Q@=¢q,R=7|0 =0)
9€Val(Q) ;. cval(R)

Solution: first use marginal inference to eliminate R, then use max inference to solve

for Q.
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Alternative Inference Methods

Huge range of techniques!

Exact:

> Integer linear programming

Inexact:
» randomized (e.g., Gibbs sampling, importance sampling, simulated annealing)

» deterministic (e.g., mean field variational, loopy belief propagation, linear
programming relaxations, dual decomposition, beam search)
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