Machine Learning (CSE 446): Perceptron

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

October 9, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Happy Medium?

Decision trees (that aren't too deep): use relatively few features to classify

K-nearest neighbors: all features weighted equally.

Today: use all features, but weight them.

Happy Medium?

Decision trees (that aren't too deep): use relatively few features to classify

K-nearest neighbors: all features weighted equally.

Today: use all features, but weight them.

For today's lecture, assume that $y \in \{-1, +1\}$ instead of $\{0, 1\}$, and that $\mathbf{x} \in \mathbb{R}^d$.

Inspiration from Neurons

Image from Wikimedia Commons.

Input signals come in through dendrites, output signal passes out through the axon.

かへで 5/22

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

6 / 22

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}\right)$$

remembering that:
$$\mathbf{w} \cdot \mathbf{x} = \sum_{j=1}^d \mathbf{w}[j] \cdot \mathbf{x}[j]$$

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}\right)$$

remembering that:
$$\mathbf{w} \cdot \mathbf{x} = \sum_{j=1}^d \mathbf{w}[j] \cdot \mathbf{x}[j]$$

Learning requires us to set the weights \mathbf{w} and the bias b.

Perceptron Learning Algorithm

```
Data: D = \langle (\mathbf{x}_n, y_n) \rangle_{n=1}^N, number of epochs E
Result: weights \mathbf{w} and bias b
initialize: \mathbf{w} = \mathbf{0} and \mathbf{b} = 0:
for e \in \{1, ..., E\} do
         for n \in \{1, \ldots, N\}, in random order do
   \begin{array}{c|c} & \# \text{ predict} \\ & \# \text{ predict} \\ & \hat{y} = \text{sign} (\mathbf{w} \cdot \mathbf{x}_n + b); \\ & \text{if } \hat{y} \neq y_n \text{ then} \\ & & \# \text{ update} \\ & \mathbf{w} \leftarrow \mathbf{w} + y_n \cdot \mathbf{x}_n; \\ & b \leftarrow b + y_n; \\ & \text{end} \end{array} 
                   end
          end
end
return w, b
```

Algorithm 1: PERCEPTRONTRAIN

Parameters and Hyperparameters

This is the first supervised algorithm we've seen that has **parameters** that are numerical values (\mathbf{w} and b).

Parameters and Hyperparameters

This is the first supervised algorithm we've seen that has **parameters** that are numerical values (\mathbf{w} and b).

The perceptron learning algorithm's sole hyperparameter is E, the number of epochs (passes over the training data).

Parameters and Hyperparameters

This is the first supervised algorithm we've seen that has **parameters** that are numerical values (\mathbf{w} and b).

The perceptron learning algorithm's sole hyperparameter is E, the number of epochs (passes over the training data).

Can you think of a clever way to efficiently tune E using development data?

Perceptron Updates

Suppose $y_n = 1$ but $\mathbf{w} \cdot \mathbf{x}_n + \mathbf{b} < 0$; this means $\hat{y} = -1$.

The new weights and bias will be:

$$\mathbf{w}' = \mathbf{w} + \mathbf{x}_n$$
$$b' = b + 1$$

If we immediately made the prediction again, we'd get activation:

$$\mathbf{w}' \cdot \mathbf{x}_n + b' = (\mathbf{w} + \mathbf{x}_n) \cdot \mathbf{x}_n + (b+1)$$
$$= \mathbf{w} \cdot \mathbf{x}_n + b + \|\mathbf{x}_n\|_2^2 + 1$$
$$\geq \mathbf{w} \cdot \mathbf{x}_n + b + 1$$

Perceptron Updates

Suppose $y_n = 1$ but $\mathbf{w} \cdot \mathbf{x}_n + \mathbf{b} < 0$; this means $\hat{y} = -1$.

The new weights and bias will be:

 $\mathbf{w}' = \mathbf{w} + \mathbf{x}_n$ b' = b + 1

If we immediately made the prediction again, we'd get activation:

$$\mathbf{w}' \cdot \mathbf{x}_n + b' = (\mathbf{w} + \mathbf{x}_n) \cdot \mathbf{x}_n + (b+1)$$
$$= \mathbf{w} \cdot \mathbf{x}_n + b + \|\mathbf{x}_n\|_2^2 + 1$$
$$\geq \mathbf{w} \cdot \mathbf{x}_n + b + 1$$

So we know we've moved in the "right direction."

イロト イポト イヨト イヨト 二日

Geometric Interpretation

For every possible \mathbf{x} , there are three possibilities:

 $\mathbf{w} \cdot \mathbf{x} + b > 0$ classified as positive $\mathbf{w} \cdot \mathbf{x} + b < 0$ classified as negative $\mathbf{w} \cdot \mathbf{x} + b = 0$ on the decision boundary

Geometric Interpretation

For every possible \mathbf{x} , there are three possibilities:

$$\begin{split} \mathbf{w} \cdot \mathbf{x} + b &> 0 \quad \text{classified as positive} \\ \mathbf{w} \cdot \mathbf{x} + b &< 0 \quad \text{classified as negative} \\ \mathbf{w} \cdot \mathbf{x} + b &= 0 \quad \text{on the decision boundary} \end{split}$$

The decision boundary is a (d-1)-dimensional hyperplane.

Linear Decision Boundary

Linear Decision Boundary

3

What does it mean when

What does it mean when

▶ $w_{12} = 100?$

What does it mean when

- ▶ $w_{12} = 100?$
- ▶ $w_{12} = -1?$

What does it mean when

- ▶ $w_{12} = 100?$
- ▶ $w_{12} = -1?$
- ► $w_{12} = 0$?