
Machine Learning (CSE 446):
Neural Networks

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

November 6, 2017

1 / 22



Admin

No Wednesday office hours for Noah; no lecture Friday.

2 / 22



Classifiers We’ve Covered So Far

decision boundary? difficult part of learning?

decision trees piecewise-axis-aligned greedy split decisions
K-nearest neighbors possibly very complex indexing training data
perceptron linear iterative optimization method required
logistic regression linear iterative optimization method required
näıve Bayes linear (see A4) none

3 / 22



Classifiers We’ve Covered So Far

decision boundary? difficult part of learning?

decision trees piecewise-axis-aligned greedy split decisions
K-nearest neighbors possibly very complex indexing training data
perceptron linear iterative optimization method required
logistic regression linear iterative optimization method required
näıve Bayes linear (see A4) none

The next methods we’ll cover permit nonlinear decision boundaries.

4 / 22



Inspiration from Neurons
Image from Wikimedia Commons.

Input signals come in through dendrites, output signal passes out through the axon.

5 / 22



Neuron-Inspired Classifiers

x[1]

…

w[1] ×

x[2] w[2] ×

x[3] w[3] ×

x[d] w[d] ×

∑

b

!

fire, or not?
ŷ

bias 
parameter

weight 
parameters

“activation” output

input

6 / 22



Neuron-Inspired Classifiers

x[1]

…

w[1] ×

x[2] w[2] ×

x[3] w[3] ×

x[d] w[d] ×

∑

b

! ŷ
output

input

f

7 / 22



Neuron-Inspired Classifiers

xn w × ∑

b

Lnyn

! ŷ
weights “activation”

classifier output, “f”
input

correct output loss

8 / 22



Neuron-Inspired Classifiers

-10 -5 0 5 10-1
.0

0.
0

1.
0

Hyperbolic tangent function, tanh(z) =
ez − e−z

ez + e−z
.

Generalization: apply elementwise to a vector, so that tanh : Rk → (−1, 1)k.

9 / 22



Neuron-Inspired Classifiers

xn w1 × ∑

b1

Lnyn

tanh

ŷ

weights

classifier output, “f”

input

correct output loss

w2 × ∑

b2

tanh

v1
×

v2

∑

×

!

“activation”

“hidden units”

10 / 22



Neuron-Inspired Classifiers

xn W × ∑

b

Lnyn

tanh
ŷ

weights

classifier output, “f”

input

correct output loss

v
× ∑ !

“activation”

“hidden units”

11 / 22



Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x+ bh)

)
= sign (v · tanh (Wx+ b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.

12 / 22



Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x+ bh)

)
= sign (v · tanh (Wx+ b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.

13 / 22



Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x+ bh)

)
= sign (v · tanh (Wx+ b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.

14 / 22



Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x+ bh)

)
= sign (v · tanh (Wx+ b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.

15 / 22



Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x+ bh)

)
= sign (v · tanh (Wx+ b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.

16 / 22



Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions?

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

17 / 22



Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions?

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

18 / 22



Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions?

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

19 / 22



Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions?

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

20 / 22



Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions? It
finds a local minimum.

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

21 / 22



Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions? It
finds a local minimum.

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

22 / 22


