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Admin

No Wednesday office hours for Noah; no lecture Friday.
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Classifiers We’ve Covered So Far

decision boundary? difficult part of learning?

decision trees piecewise-axis-aligned greedy split decisions
K-nearest neighbors possibly very complex indexing training data
perceptron linear iterative optimization method required
logistic regression linear iterative optimization method required
näıve Bayes linear (see A4) none
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The next methods we’ll cover permit nonlinear decision boundaries.
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Inspiration from Neurons
Image from Wikimedia Commons.

Input signals come in through dendrites, output signal passes out through the axon.
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Neuron-Inspired Classifiers
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Neuron-Inspired Classifiers
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Neuron-Inspired Classifiers
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Hyperbolic tangent function, tanh(z) =
ez − e−z

ez + e−z
.

Generalization: apply elementwise to a vector, so that tanh : Rk → (−1, 1)k.
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Neuron-Inspired Classifiers
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Neuron-Inspired Classifiers

xn W × ∑

b

Lnyn

tanh
ŷ

weights

classifier output, “f”

input

correct output loss

v
× ∑ !

“activation”

“hidden units”

11 / 22



Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x+ bh)

)
= sign (v · tanh (Wx+ b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.
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Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions?

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.
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