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Learning as Loss Minimization

N
o1
z* — arg;nln N Z L(xp,yn,z) +R(z)

n=1 Ln(2)

For our hyperplane/neuron-inspired classifier, z = (w, b).
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Subderivatives and Subgradients

A subderivative of F' at x is any ¢ such that, for all z:

F(x) — F(zg) > c(x — x0)

This is a generalization of derivatives (for differentiable functions, there is only one
subderivative at xg, and it's the derivative).

Vector of subderivatives in all dimensions: subgradient.
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Subderivative

\\

The set of subderivatives for the function at a point z consists of the slopes of all
tangent lines fully below the function.
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Subderivative

T

\

The set of subderivatives for the function at a point z consists of the slopes of all
tangent lines fully below the function.
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Subderivative

AN

The set of subderivatives for the function at a point z consists of the slopes of all
tangent lines fully below the function.
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Subderivative

V%

The set of subderivatives for the function at a point z consists of the slopes of all
tangent lines fully below the function.
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Variation 1

Data: function F : R? — R, number of iterations K, step sizes (n(l), ceey

Result: z € R?

initialize: z(9) = 0;

for ke {1,...,K} do
# choose a subgradient; doesn't matter which one;
gk = VZF(z(kfl));
(k) — Z(k=1) _ n(k) .g(k)

end

return Z(K)

Algorithm 1: SUBGRADIENTDESCENT

)
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Variation 2

Data: loss functions L1, ..., Ly, regularization function R, number of iterations K,
step sizes (n(1), ..., n(K))
Result: parameters z € R?
initialize: z(9) = 0;
for k€ {1,...,K} do
i ~ Uniform({1,...,N});
g®) =vV,L;i(z% D) + V,R(z*);
zh) = z(b=1) _ (k) . g(k)

end
return z(5;
N
Algorithm 2: STOCHASTIC(SUB) GRADIENTDESCENT for minimizing  »  Ln(z) +
n=1

R(z).
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Observation

If you let L be the perceptron loss and don’t regularize, and run stochastic subgradient
descent with all n = 1, you have recovered the perceptron algorithm.
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Variation 3

Data: loss functions L1, ..., Ly, regularization function R, number of iterations K,
step sizes (n(1), ..., n5)), minibatch size B
Result: parameters z € R?
initialize: z(9) = 0;
for k€ {1,...,K} do
I ~ Uniform({1, ..., N}5);
gh) = LS V,Li(z* V) + V,R(z+1);
zh) = z(b=1) _ (k) . g(k)

end

return z(%):

Algorithm 3: MINIBATCHSTOCHASTIC(SUB)GRADIENTDESCENT for minimizing

N
+ Z L, (z) + R(z).
n=1
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General-Purpose Optimization Algorithms

{batch, minibatch, stochastic} x (sub)gradient descent
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General-Purpose Optimization Algorithms

{batch, minibatch, stochastic} x (sub)gradient descent

Ninja: treat minibatch size B € {1,..., N} as a hyperparameter!

13/20



Regularization
(Review)

Choose your loss function L. To fit the training data:

N
1
@V{gN;L(yn~(w-xn+b)) + R(w,b)

Regularization: add a penalty to the objective function to encourage generalization.

Most common: R(w,b) = \||w||3.
» Note that this term is convex and differentiable.

This is called (squared) Lo regularization or ridge regularization.
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Some Regularization Functions

ridge or (squared) Lo A|w|3 = )\Zw[d]2
d

‘Lo Alwlo = A3 [wld] # 0]
d

lasso or L1 Awlly =AY |wld]]
d

Inductive bias for ridge: small change in x[d] should have a small effect on prediction.
Penalizing ||w||2 is the same as penalizing ||w||3, but to get the same effect you'll need
a different \.
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Some Regularization Functions

ridge or (squared) Ly  A|w|3 = )\Zw[d]2
d

“Lo" Alwlo =X [wld] #0]
d

lasso or Ly A|wllt = A [w(d]|
d

Inductive bias for Ly: use fewer features.
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Some Regularization Functions
ridge or (squared) Ly  A|w|3 = )\Zw[d]2
d

“Lo" Alwlo =X [wld] #0]
d

lasso or Ly A|wllt = A [w(d]|
d

Inductive bias for Ly and lasso: use fewer features.
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A Constrained View of the Regularized Loss Minimization Problem

Tikhonov regularization:

N
1
z* = argmin N ZLn(Z) + Allzlp
z n=1

Ivanov regularization:

N
1
z" = argmin N Z L, (z)
z n=1

st |lzll, <7
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optimization algorithms

(sub)gradient descent

minibatch (sub)gradient descent loss functions

stochastic (sub)gradient descent perceptron

Zero-one

log

squared

regularization
functions

lasso
(Ly)

ridge
(L)

none

linear regression

logistic regression

perceptron
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