
Machine Learning (CSE 446):
Variations on the Theme of Gradient Descent

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

October 27, 2017

1 / 20

Learning as Loss Minimization

z∗ = argmin
z

1

N

N∑
n=1

L(xn, yn, z)︸ ︷︷ ︸
Ln(z)

+R(z)

For our hyperplane/neuron-inspired classifier, z = (w, b).

2 / 20

Subderivatives and Subgradients

A subderivative of F at x0 is any c such that, for all x:

F (x)− F (x0) ≥ c(x− x0)

This is a generalization of derivatives (for differentiable functions, there is only one
subderivative at x0, and it’s the derivative).

Vector of subderivatives in all dimensions: subgradient.

3 / 20

Subderivative

x0

The set of subderivatives for the function at a point x0 consists of the slopes of all
tangent lines fully below the function.

4 / 20

Subderivative

x0

The set of subderivatives for the function at a point x0 consists of the slopes of all
tangent lines fully below the function.

5 / 20

Subderivative

x0

The set of subderivatives for the function at a point x0 consists of the slopes of all
tangent lines fully below the function.

6 / 20

Subderivative

x0

The set of subderivatives for the function at a point x0 consists of the slopes of all
tangent lines fully below the function.

7 / 20

Variation 1

Data: function F : Rd → R, number of iterations K, step sizes 〈η(1), . . . , η(K)〉
Result: z ∈ Rd

initialize: z(0) = 0;
for k ∈ {1, . . . ,K} do

choose a subgradient; doesn’t matter which one;

g(k) = ∇zF (z
(k−1));

z(k) = z(k−1) − η(k) · g(k);

end

return z(K);
Algorithm 1: SubgradientDescent

8 / 20

Variation 2

Data: loss functions L1, . . . , LN , regularization function R, number of iterations K,
step sizes 〈η(1), . . . , η(K)〉

Result: parameters z ∈ Rd

initialize: z(0) = 0;
for k ∈ {1, . . . ,K} do

i ∼ Uniform({1, . . . , N});
g(k) = ∇zLi(z

(k−1)) +∇zR(z
(k−1));

z(k) = z(k−1) − η(k) · g(k);

end

return z(K);

Algorithm 2: Stochastic(Sub)GradientDescent for minimizing 1
N

N∑
n=1

Ln(z) +

R(z).

9 / 20

Observation

If you let L be the perceptron loss and don’t regularize, and run stochastic subgradient
descent with all η = 1, you have recovered the perceptron algorithm.

10 / 20

Variation 3

Data: loss functions L1, . . . , LN , regularization function R, number of iterations K,
step sizes 〈η(1), . . . , η(K)〉, minibatch size B

Result: parameters z ∈ Rd

initialize: z(0) = 0;
for k ∈ {1, . . . ,K} do

I ∼ Uniform({1, . . . , N}B);
g(k) = 1

B

∑
i∈I ∇zLi(z

(k−1)) +∇zR(z
(k−1));

z(k) = z(k−1) − η(k) · g(k);

end

return z(K);
Algorithm 3: MinibatchStochastic(Sub)GradientDescent for minimizing

1
N

N∑
n=1

Ln(z) +R(z).

11 / 20

General-Purpose Optimization Algorithms

{batch, minibatch, stochastic} × (sub)gradient descent

12 / 20

General-Purpose Optimization Algorithms

{batch, minibatch, stochastic} × (sub)gradient descent

Ninja: treat minibatch size B ∈ {1, . . . , N} as a hyperparameter!

13 / 20

Regularization
(Review)

Choose your loss function L. To fit the training data:

min
w,b

1

N

N∑
n=1

L (yn · (w · xn + b)) +R(w, b)

Regularization: add a penalty to the objective function to encourage generalization.

Most common: R(w, b) = λ‖w‖22.

I Note that this term is convex and differentiable.

This is called (squared) L2 regularization or ridge regularization.

14 / 20

Some Regularization Functions

ridge or (squared) L2 λ‖w‖22 = λ
∑
d

w[d]2

“L0” λ‖w‖0 = λ
∑
d

Jw[d] 6= 0K

lasso or L1 λ‖w‖1 = λ
∑
d

|w[d]|

Inductive bias for ridge: small change in x[d] should have a small effect on prediction.
Penalizing ‖w‖2 is the same as penalizing ‖w‖22, but to get the same effect you’ll need
a different λ.

15 / 20

Some Regularization Functions

ridge or (squared) L2 λ‖w‖22 = λ
∑
d

w[d]2

“L0” λ‖w‖0 = λ
∑
d

Jw[d] 6= 0K

lasso or L1 λ‖w‖1 = λ
∑
d

|w[d]|

Inductive bias for L0: use fewer features.

16 / 20

Some Regularization Functions

ridge or (squared) L2 λ‖w‖22 = λ
∑
d

w[d]2

“L0” λ‖w‖0 = λ
∑
d

Jw[d] 6= 0K

lasso or L1 λ‖w‖1 = λ
∑
d

|w[d]|

Inductive bias for L0 and lasso: use fewer features.

17 / 20

A Constrained View of the Regularized Loss Minimization Problem

Tikhonov regularization:

z∗ = argmin
z

1

N

N∑
n=1

Ln(z) + λ‖z‖p

Ivanov regularization:

z∗ = argmin
z

1

N

N∑
n=1

Ln(z)

s.t. ‖z‖p ≤ τ

18 / 20

19 / 20

optimization algorithms

loss functions

perceptron

minibatch (sub)gradient descent

stochastic (sub)gradient descent
zero-one

log
squared

regularization
functions
lasso
(L1)

ridge
(L2)

none logistic regression

linear regression

perceptron

(sub)gradient descent

20 / 20

