Machine Learning (CSE 446): Learning as Minimizing Loss

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

October 23, 2017

Sorry! No office hour for me today. Wednesday is as usual.

Perceptron

A model and an algorithm, rolled into one.

Model: $f(\mathbf{x}) = \text{sign}(\mathbf{w} \cdot \mathbf{x} + b)$, known as **linear**, visualized by a (hopefully) separating hyperplane in feature-space.

Algorithm: PerceptronTrain, an error-driven, iterative updating algorithm.

"Minimize training-set error rate":

$$\min_{\mathbf{w},b} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \llbracket y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b) \leq 0 \rrbracket}_{\epsilon^{\text{train}} \equiv \text{ zero-one loss}}$$

"Minimize training-set error rate":

$$\min_{\mathbf{w},b} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \llbracket y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b) \leq 0 \rrbracket}_{\epsilon^{\text{train}} \equiv \text{ zero-one loss}}$$

This problem is NP-hard; even solving it approximately (i.e., getting within a small constant factor of the optimal value) is NP-hard!

"Minimize training-set error rate":

$$\min_{\mathbf{w},b} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \llbracket y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b) \le 0 \rrbracket}_{\epsilon^{\text{train}} \equiv \text{ zero-one loss}}$$

What the perceptron does:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\max(-y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b), \quad 0)}_{\text{perceptron loss}}$$

"Minimize training-set error rate":

$$\min_{\mathbf{w},b} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \llbracket y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b) \leq 0 \rrbracket}_{\epsilon^{\text{train}} \equiv \text{ zero-one loss}}$$

What the perceptron does:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\max(-y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b), \quad 0)}_{\text{perceptron loss}}$$

"Minimize training-set error rate":

$$\min_{\mathbf{w},b} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \llbracket y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b) \leq 0 \rrbracket}_{\epsilon^{\mathsf{train}} \equiv \mathsf{zero-one~loss}}$$

What the perceptron does:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\max(-y_n \cdot (\mathbf{w} \cdot \mathbf{x} + b), \quad 0)}_{\text{perceptron loss}}$$

► Continuous (perceptron loss, squash loss) vs. discrete (zero-one loss)

- Continuous (perceptron loss, squash loss)
 vs. discrete (zero-one loss)
- ► Convex (perceptron loss)
 vs. nonconvex (zero-one loss, squash loss)

- ► Continuous (perceptron loss, squash loss) vs. discrete (zero-one loss)
- ► Convex (perceptron loss)
 vs. nonconvex (zero-one loss, squash loss)
- Differentiable (squash loss)
 vs. nondifferentiable (zero-one loss, perceptron loss)

- Continuous (perceptron loss, squash loss)
 vs. discrete (zero-one loss)
 (The sum of two continuous functions is also continuous.)
- Convex (perceptron loss)
 vs. nonconvex (zero-one loss, squash loss)
 (The sum of two convex functions is also convex.)
- Differentiable (squash loss)
 vs. nondifferentiable (zero-one loss, perceptron loss)

(The sum of two differentiable functions is also differentiable.)

Choose your loss function L. To fit the training data:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} L\left(y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\right)$$

Choose your loss function L. To fit the training data:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} L\left(y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\right) + R(\mathbf{w},b)$$

Regularization: add a penalty to the objective function to encourage generalization.

Choose your loss function L. To fit the training data:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} L\left(y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\right) + R(\mathbf{w},b)$$

Regularization: add a penalty to the objective function to encourage generalization.

Most common: $R(\mathbf{w}, b) = \lambda ||\mathbf{w}||_2^2$.

Choose your loss function L. To fit the training data:

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} L\left(y_n \cdot (\mathbf{w} \cdot \mathbf{x}_n + b)\right) + R(\mathbf{w},b)$$

Regularization: add a penalty to the objective function to encourage generalization.

Most common: $R(\mathbf{w}, b) = \lambda ||\mathbf{w}||_2^2$.

▶ Note that this term is convex and differentiable.

Your new hobby: blindfolded mountain escape

Convex Optimization 101

Assume we are minimizing a function $F: \mathbb{R}^d \to \mathbb{R}$ that is continuous, convex, and differentiable with respect to its input, \mathbf{z} .

$$\min_{\mathbf{z}} F(\mathbf{z})$$

At a given point z_0 , the direction of steepest descent is the negative gradient:

$$-\mathbf{g}(\mathbf{z}_0) = -\nabla_{\mathbf{z}} F(\mathbf{z}_0) = -\begin{bmatrix} \frac{\partial F}{\partial \mathbf{z}[1]}(\mathbf{z}_0) \\ \frac{\partial F}{\partial \mathbf{z}[2]}(\mathbf{z}_0) \\ \vdots \frac{\partial F}{\partial \mathbf{z}[d]}(\mathbf{z}_0) \end{bmatrix}$$

Note that $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^d$.

Gradient Descent

Gradient Descent

