Machine Learning (CSE 446):

Learning as Minimizing Loss
Noah Smith

© 2017

University of Washington
nasmith@cs.washington.edu

October 23, 2017

21

Sorry! No office hour for me today. Wednesday is as usual.

21

Perceptron

A model and an algorithm, rolled into one.

Model: f(x) = sign(w - x + b), known as linear, visualized by a (hopefully) separating
hyperplane in feature-space.

Algorithm: PERCEPTRONTRAIN, an error-driven, iterative updating algorithm.

3/21

A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”: loss

N
1
I}}v{ilNZ_:lﬂyn-(w-Xqu) < 0]

~~ e

etrain= zero-one loss

margin |=y = (W = x + b)

A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”:

loss

1 N
NZ (w-x+0) <0]

etrain= zero-one loss

This problem is NP-hard; even solving it margin |- y -
approximately (i.e., getting within a small constant
factor of the optimal value) is NP-hard!

(w -

X + b)

21

A Different View of PERCEPTRONTRAIN: Optimization

loss

“Minimize training-set error rate”:

N
il . . <
I?VTENZ;[[% (W X+b) _0]] margin|=y = (w = x +)
n=

etrain= zero-one loss

What the perceptron does: loss

mln—ZmaX —Yn - (w x+b), 0)

w,b

perceptron loss

margin| =y » (w = x + b)

A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”:

N
1
rgvfilNz_:l[[yn-(w-xﬂLb) < 0]

etrain= zero-one loss

What the perceptron does:

mln—ZmaX —Yn - (w x +b),

w,b

—

0)

perceptron loss

\
v

A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”:

N
1
rglvglNZ:l[[yn-(w-x+b)§0]] ‘

etrain= zero-one loss

What the perceptron does:

w,

N
o1
mlianZlmax(—yn -(w-x+b), 0)

perceptron loss

\

21

Squash (Sigmoid) Loss?

~

loss

margin

:yl

(w » x+b)

/21

Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)

>
margin |=y « (w * x + b)

10/21

Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)

» Convex (perceptron loss)
vs. nonconvex (zero-one loss, squash loss)

>
margin |=y « (w * x + b)

11/21

Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)

» Convex (perceptron loss)
vs. nonconvex (zero-one loss, squash loss)

>
margin |=y « (w * x + b)

» Differentiable (squash loss)
vs. nondifferentiable (zero-one loss, perceptron
loss)

12 /21

Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)
(The sum of two continuous functions is also
continuous.)
» Convex (perceptron loss)
vs. nonconvex (zero-one loss, squash loss)
(The sum of two convex functions is also convex.)
» Differentiable (squash loss)
vs. nondifferentiable (zero-one loss, perceptron
loss)
(The sum of two differentiable functions is also
differentiable.)

13/21

Regularization

Choose your loss function L. To fit the training data:

N
1
@V{gNZ_:lL(yn-(w-anrb))

14 /21

Regularization

Choose your loss function L. To fit the training data:

N

1
@V{gN;L(yn~(w-xn+b)) + R(w,b)

Regularization: add a penalty to the objective function to encourage generalization.

15/21

Regularization

Choose your loss function L. To fit the training data:

N
1
@V{gN;L(yn-(W-xn+b)) + R(w, b)

Regularization: add a penalty to the objective function to encourage generalization.

Most common: R(w,b) = \||w||3.

16 /21

Regularization

Choose your loss function L. To fit the training data:

N
1
glvng;L(yn-(w-anrb)) + R(w,b)

Regularization: add a penalty to the objective function to encourage generalization.

Most common: R(w,b) = \||w||3.

» Note that this term is convex and differentiable.

17 /21

Your new hobby: blindfolded mountain escape

18/21

Convex Optimization 101

Assume we are minimizing a function F : R¢ — R that is continuous, convex, and
differentiable with respect to its input, z.

min F'(z)

Z

At a given point zg, the direction of steepest descent is the negative gradient:

%@(Zo)
—g(z0) = —V,F(z0) = — | a9 (20)

ety (20)

Note that g : R — R<,

19/21

Gradient Descent

Data: function F' : RY — R, number of iterations K, step sizes (p1), ..., 7))
Result: z € R?
initialize: z(9) = 0;
for k€ {1,...,K} do
gk = VZF(z(k—l));
29 — g0=1) _ () g

end

1

return Z(K)

Algorithm 1: GRADIENTDESCENT

20/21

Gradient Descent

- R

21/21

