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Sorry! No office hour for me today. Wednesday is as usual.
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Perceptron

A model and an algorithm, rolled into one.

Model: f(x) = sign(w - x + b), known as linear, visualized by a (hopefully) separating
hyperplane in feature-space.

Algorithm: PERCEPTRONTRAIN, an error-driven, iterative updating algorithm.
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A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”: loss
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A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”:

loss

1 N
NZ (w-x+0) <0]

etrain= zero-one loss

This problem is NP-hard; even solving it margin |- y -
approximately (i.e., getting within a small constant
factor of the optimal value) is NP-hard!
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A Different View of PERCEPTRONTRAIN: Optimization

loss

“Minimize training-set error rate”:
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What the perceptron does: loss
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A Different View of PERCEPTRONTRAIN: Optimization

“Minimize training-set error rate”:
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What the perceptron does:
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Squash (Sigmoid) Loss?
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Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)

>
margin |=y « (w * x + b)
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Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)

» Convex (perceptron loss)
vs. nonconvex (zero-one loss, squash loss)
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Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)

» Convex (perceptron loss)
vs. nonconvex (zero-one loss, squash loss)

>
margin |=y « (w * x + b)

» Differentiable (squash loss)
vs. nondifferentiable (zero-one loss, perceptron
loss)
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Different Kinds of Objective Functions

» Continuous (perceptron loss, squash loss)
vs. discrete (zero-one loss)
(The sum of two continuous functions is also
continuous.)
» Convex (perceptron loss)
vs. nonconvex (zero-one loss, squash loss)
(The sum of two convex functions is also convex.)
» Differentiable (squash loss)
vs. nondifferentiable (zero-one loss, perceptron
loss)
(The sum of two differentiable functions is also
differentiable.)
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Regularization

Choose your loss function L. To fit the training data:
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Regularization

Choose your loss function L. To fit the training data:

N
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Regularization: add a penalty to the objective function to encourage generalization.
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Regularization

Choose your loss function L. To fit the training data:
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Regularization: add a penalty to the objective function to encourage generalization.

Most common: R(w,b) = \||w||3.
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Regularization

Choose your loss function L. To fit the training data:

N
1
glvng;L(yn-(w-anrb)) + R(w,b)

Regularization: add a penalty to the objective function to encourage generalization.

Most common: R(w,b) = \||w||3.

» Note that this term is convex and differentiable.
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Your new hobby: blindfolded mountain escape
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Convex Optimization 101

Assume we are minimizing a function F : R¢ — R that is continuous, convex, and
differentiable with respect to its input, z.

min F'(z)

Z

At a given point zg, the direction of steepest descent is the negative gradient:

%@(Zo)
—g(z0) = —V,F(z0) = — | a9 (20)

ety (20)

Note that g : R — R<,
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Gradient Descent

Data: function F' : RY — R, number of iterations K, step sizes (p1), ..., 7))
Result: z € R?
initialize: z(9) = 0;
for k€ {1,...,K} do
gk = VZF(z(k—l));
29 — g0=1) _ () g

end

1

return Z(K)

Algorithm 1: GRADIENTDESCENT
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Gradient Descent

- R
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