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The Bayes Optimal Classifier

f (BO)(x) = argmax
y
D(x, y)
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The Bayes Optimal Classifier

f (BO)(x) = argmax
y
D(x, y)

Theorem: The Bayes optimal classifier achieves minimal zero/one error
(`(y, ŷ) = Jy 6= ŷK) of any deterministic classifier.
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Proof

Consider (deterministic) f ′ that claims to be better than f (BO) and x such that
f (BO)(x) 6= f ′(x).
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Proof

Consider (deterministic) f ′ that claims to be better than f (BO) and x such that
f (BO)(x) 6= f ′(x).
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D(x, f (BO)(x)) = max
y
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⇒

(∑
y
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Consider (deterministic) f ′ that claims to be better than f (BO) and x such that
f (BO)(x) 6= f ′(x).
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By definition,
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(∑
y

D(x, y)

)
−D(x, f (BO)(x)) ≤

(∑
y

D(x, y)

)
−D(x, f ′(x))

This must hold for all x. Hence f ′ is no better than f (BO).
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One Limit of Learning

You cannot do better than ε(fBO).
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Unavoidable Error

I Noise in the features (we don’t want to “fit” the noise!)

I Insufficient information in the available features (e.g., incomplete data)

I No single correct label (e.g., inconsistencies in the data-generating process)

These have nothing to do with your choice of learning algorithm.
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An Exercise
Following Daume (2017), chapter 2.

Class A Class B
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An Exercise
Following Daume (2017), chapter 2.

Test
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Inductive Bias

Just as you had a tendency to focus on a certain type of function f , machine learning
algorithms correspond to classes of functions (F) and preferences within the class.
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Inductive Bias

Just as you had a tendency to focus on a certain type of function f , machine learning
algorithms correspond to classes of functions (F) and preferences within the class.

E.g., shallow decision trees: “use a small number of features.”
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General Recipe

The cardinal rule of machine learning: Don’t touch your test data.

If you follow that rule, this recipe will give you accurate information:

1. Split data into training, development, and test sets.

2. For different hyperparameter settings:

2.1 Train on the training data using those hyperparameter values.
2.2 Evaluate loss on development data.

3. Choose the hyperparameter setting whose model achieved the lowest development
data loss.
Optionally, retrain on the training and development data together.

4. Evaluate that model on test data.
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Design Process for ML Applications

example
1 real world goal increase revenue
2 mechanism show better ads
3 learning problem will a user who queries q click ad a?
4 data collection interaction with existing system
5 collected data query q, ad a, ±click
6 data representation (q word, a word) pairs
7 select model family decision trees up to 20
8 select training/dev. data September
9 train and select hyperparameters single decision tree

10 make predictions on test set October
11 evaluate error zero-one loss (±click)
12 deploy $?

16 / 22



Machine Learning (CSE 446):
Geometry and Nearest Neighbors

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

October 4, 2017

17 / 22



Features
Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

All features are represented as R
values.
Side note: could convert discrete
origin feature into three binary
features as follows:

1/america→ (1, 0, 0)

2/europe→ (0, 1, 0)

3/asia→ (0, 0, 1)

The “1–2–3” values suggest
ordinality, which is misleading.
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Instance x Becomes Vector x

First example in the data, “Chevrolet Chevelle Malibu,” becomes:

[8, 307.0, 130.0, 3504, 12.0, 70, 1, 0, 0]

“Buick Skylark 320” becomes:

[8, 350.0, 165.0, 3693, 11.5, 70, 1, 0, 0]
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Euclidean Distance

General formula for the Euclidean distance between two d-length vectors:

dist(x,x′) =

√√√√ d∑
j=1

(x[j]− x′[j])2

=
∥∥x− x′

∥∥
2
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Euclidean Distance

General formula for the Euclidean distance between two d-length vectors:

dist(x,x′) =

√√√√ d∑
j=1

(x[j]− x′[j])2

=
∥∥x− x′

∥∥
2

The distance between the Chevrolet Chevelle Malibu and the Buick Skylark 320:√
(8− 8)2 + (307− 350)2 + (130− 165)2 + (3504− 3693)2

+(12− 11.5)2 + (70− 70)2 + (1− 1)2 + (0− 0)2 + (0− 0)2

=
√
1849 + 1225 + 35721 + 0.25

≈ 196.965
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