Machine Learning (CSE 446):
Kernel Methods

Noah Smith
© 2017

University of Washington
nasmith@cs.washington.edu

November 15, 2017

Can We Have Nonlinearity and Convexity?

‘expressiveness convexity

Linear classifiers ® ®
Neural networks ® ®

Can We Have Nonlinearity and Convexity?

‘expressiveness convexity

Linear classifiers ® ®)
Neural networks ® ®

Kernel methods: a family of approaches that give us nonlinear decision boundaries
without giving up convexity.

Notation

Let x = (z1,z2,...,2q).

Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.

Consider two binary features, ¢; and ¢;/. A new conjunction feature can be defined by:

ding () = ¢j(x) N pj(x) equivalently z44q =5 Axj

Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.

Consider two binary features, ¢; and ¢;. A new conjunction feature can be defined by:

dinj'(x) = dj(x) A pjr(x) equivalently zg41 =z Ay

Generalization: take the product of two features.

6

Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.
Consider two binary features, ¢; and ¢;/. A new conjunction feature can be defined by:

ding(x) = ¢j(x) N pj(x) equivalently z441 =25 Axy

Generalization: take the product of two features.
Bigger generalization: take all the products!

¢(x) = vector((1;x)(1;x))

= < 17 Ty, z2, sy Zd,
2
X, x7, Xy - X2, ceey X1 - Xd,
2
€2, x2 -1, Ty, sy €2+ Xd,
Ld—1, Id—1'T1, Td—1-T2, ---5, Id—1"Td,

2
Zd, Xq - T, Zq -T2, cee Ty >

The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing
you do with feature vectors is take inner products between them.

The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing
you do with feature vectors is take inner products between them.

Note that: ¢(x) - ¢(v)

= 1 + 101 + ToU2 44 TqUd
r1v]y + x%v% + T1x9U1V2 + -+ X1T4UIVg
Tov2 + Tax1V2V1 + x%vg + -+ XaxgU2vg

2

+
l’
+ : : : : :
+ Tgvqg + TgT1VgU1 A+ TgTovgv2 A+t X203

=1+2- Zx]vj + szﬁk’vﬂk

=1 k=1
:1+2~X-V+(X-V)2
=(1+x-v)

Kernels

A kernel function (implicitly) computes:

K(x,v) = ¢(x) - ¢(v)

for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.

10

Kernels
A kernel function (implicitly) computes:

K(x,v) = ¢(x) - ¢(v)
for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.
Some kernels:

quadratic K99(x v) = (1 +x-v)?
cubic KP¢(x,v) = (1+x-v)?
x,v)=(1+x-v)P

2
= exp (—7 Il — V”Q)
=tanh(l +x-v) (not a kernel)

d
all conjunctions K2 <(x v) = H(l +2jv5) (for binary features)

J]=

—

11

Perceptron Learning Algorithm

Data: D = ((xy, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
predict
g = sign (w - x,, + b);
if § # y, then
update
W < W + Y, - Xn»
b+ b+ yn;

end

end
end
return w, b

Algorithm 1: PERCEPTRONTRAIN

12

Perceptron Representer Theorem

At every stage of learning, there exist (a1, o, ..., an) such that

N
_ _ T
w = ap X, = X
n=1

In other words, w is always in the span of the training data.

13

Perceptron Learning Algorithm (with ¢)

Data: D = ((x, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
predict
= sign (w - () + b);
if § #£ y, then
update

W W+ yp - O(Xn);
b+ b+ yn;

end

end

end

return w, b

Algorithm 2: PERCEPTRONTRAIN with ¢ (explicit)

14

Prediction

§ = sign (w - d(xn) +0)

N
= sign <Z ;- (i) - P(xn) + b)

=1

N
ZO@ . K(xi,xn) +b>

i=1

= sign

15

The Update

winew) . (old) + yp - ¢(n)
N
Zainew D(x;) Za (old) d(xi) + yn - P(xn)
=1

Z Ozz(new) C(xi) + ™ p(xp) Z O‘iOId CB(xi) + () +) - B(xn)
i#n i#n
(new) ¢() ((Old) + Yn) ¢(Xn)

alre™) ol 4y,

16

¢(x,) is Never Explicitly Computed!

N
predict: ¢ = sign (Z a; - K(x4,%,) + b
i=1
update: ("W o) 440

We only calculate inner products of such vectors.

)

17

Kernelized Perceptron Learning Algorithm

Data: D = ((x, yn)>7]¥:11 number of epochs E
Result: weights « and bias b
initialize: @« =0 and b = 0;

forec {1,...,E} do

for n € {1,..., N}, in random order do
7 predict
g =sign (X0 i+ K (xi, %) +b);
if § # y, then
update
Qp < O + Yn,
b+ b+ yn;
end
end
end
return o, b

Algorithm 3: KERNELIZEDPERCEPTRONTRAIN
18

