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Features
Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

All features are represented as R
values.
Side note: could convert discrete
origin feature into three binary
features as follows:

1/america→ (1, 0, 0)

2/europe→ (0, 1, 0)

3/asia→ (0, 0, 1)

The “1–2–3” values suggest
ordinality, which is misleading.
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https://archive.ics.uci.edu/ml/datasets/Auto+MPG


Instance x Becomes Vector x

First example in the data, “Chevrolet Chevelle Malibu,” becomes:

[8, 307.0, 130.0, 3504, 12.0, 70, 1, 0, 0]

“Buick Skylark 320” becomes:

[8, 350.0, 165.0, 3693, 11.5, 70, 1, 0, 0]
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Euclidean Distance

General formula for the Euclidean distance between two d-length vectors:

dist(x,x′) =

√√√√ d∑
j=1

(x[j]− x′[j])2

=
∥∥x− x′

∥∥
2
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Euclidean Distance

General formula for the Euclidean distance between two d-length vectors:

dist(x,x′) =

√√√√ d∑
j=1

(x[j]− x′[j])2

=
∥∥x− x′

∥∥
2

The distance between the Chevrolet Chevelle Malibu and the Buick Skylark 320:√
(8− 8)2 + (307− 350)2 + (130− 165)2 + (3504− 3693)2

+(12− 11.5)2 + (70− 70)2 + (1− 1)2 + (0− 0)2 + (0− 0)2

=
√
1849 + 1225 + 35721 + 0.25

≈ 196.965
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Training Data in Rd
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Classifying a New Example in Rd
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Classifying a New Example in Rd
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Nearest Neighbor Classifier

Data: training data D = 〈(xn, yn)〉Nn=1, input x
Result: predicted class
let n∗ = argmin

n∈{1,...,N}
dist (xn,x);

return yn∗ ;
Algorithm 1: NNTest
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Decision Boundary
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Decision Boundary
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K-Nearest Neighbors Classifier

Data: training data D = 〈(xn, yn)〉Nn=1, input x
Result: predicted class
S = ∅;
for n ∈ {1, . . . , N} do

S = S ∪ {(dist(xn,x), yn)};
end
# sort on distances
L = sort(S);
return majorityClass(L[1], . . . , L[K]);

Algorithm 2: KNNTest
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K-Nearest Neighbors: Inductive Bias

Neighbors have the same label; classes align to contiguous “regions” in feature space.

All features are equally important.
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Questions to Discuss

I What are the hyperparameters? How will they affect the classifier’s performance?

I How might we change the importance of different features?

I What does the decision boundary look like for decision stumps? Decision trees?
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Tangent: Unsupervised Learning
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Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.
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An Iterative Clustering Algorithm
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An Iterative Clustering Algorithm

The stars are cluster centers,
randomly assigned at first.
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An Iterative Clustering Algorithm

Assign each example to its nearest
cluster center.
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An Iterative Clustering Algorithm

Recalculate cluster centers to
reflect their respective examples.
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An Iterative Clustering Algorithm

At this point, nothing will change;
we have converged.
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