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Features

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin
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All features are represented as R
values.

Side note: could convert discrete
origin feature into three binary
features as follows:

1/america — (1,0,0)
2/europe — (0,1,0)
3/asia — (0,0, 1)

The “1-2-3" values suggest
ordinality, which is misleading.
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https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Instance  Becomes Vector x

First example in the data, “Chevrolet Chevelle Malibu,” becomes:

[8,307.0,130.0, 3504, 12.0, 70, 1, 0, 0]

“Buick Skylark 320" becomes:

[8,350.0,165.0, 3693, 11.5, 70, 1,0, 0]



Euclidean Distance

General formula for the Euclidean distance between two d-length vectors:

d

dist(x,x') = Z(X[J] —x/[j])?

J=1

=[x ==,



Euclidean Distance

General formula for the Euclidean distance between two d-length vectors:

d

dist(x,x) = Z(X[J] —x/[j])?

The distance between the Chevrolet Chevelle Malibu and the Buick Skylark 320:

(8 — 8)% + (307 — 350)2 + (130 — 165)? + (3504 — 3693)2
+(12 = 11.5)2 + (70 — 70)* 4+ (1 — 1)+ (0 — 0)® + (0 — 0)?
= /1849 + 1225 + 35721 + 0.25
~ 196.965




Training Data in R?
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Classifying a New Example in R?
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Classifying a New Example in R?

/25



Nearest Neighbor Classifier

Data: training data D = <(xn,yn))i\;1, input x
Result: predicted class
let n* = argmin dist (x,,x);

ne{l,...,N}

return yp»;
Algorithm 1: NNTEST



Decision Boundary
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Decision Boundary
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K-Nearest Neighbors Classifier

Data: training data D = <(xn,yn))nNzl,
Result: predicted class
S =0
forne{1,...,N} do
‘ S =S U{(dist(xp,X),Yn)};
end
# sort on distances
L = SORT(S);
return MAJORITYCLASS(L[1],..., LIK]);
Algorithm 2: KNNTEST

input x
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K-Nearest Neighbors: Inductive Bias

Neighbors have the same label; classes align to contiguous “regions” in feature space.

All features are equally important.
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Questions to Discuss

» What are the hyperparameters? How will they affect the classifier's performance?
» How might we change the importance of different features?

» What does the decision boundary look like for decision stumps? Decision trees?
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Tangent: Unsupervised Learning
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Unsupervised Learning

The training dataset consists only of (x,,)_;.

There might, or might not, be a test set with correct classes y.

Simplest kind of unsupervised learning: cluster into K groups.
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An lterative Clustering Algorithm




An lterative Clustering Algorithm

The stars are cluster centers,
randomly assigned at first.



An lterative Clustering Algorithm

Assign each example to its nearest
cluster center.
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An lterative Clustering Algorithm

Recalculate cluster centers to
reflect their respective examples.
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An lterative Clustering Algorithm

Assign each example to its nearest
cluster center.
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An lterative Clustering Algorithm

Recalculate cluster centers to
reflect their respective examples.
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An lterative Clustering Algorithm

Assign each example to its nearest
cluster center.
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An lterative Clustering Algorithm

Recalculate cluster centers to
reflect their respective examples.
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An lterative Clustering Algorithm

At this point, nothing will change;
we have converged.
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