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Data: D = 〈(xn, yn)〉Nn=1, number of epochs E, weighted learner W
Result: classifier
β(0) = 〈 1N ,

1
N , . . . ,

1
N 〉; # initialize example weights

for e ∈ {1, . . . , E} do
f (e) ←W(D,β(e−1)); # train the classifier on the weighted data

ε̂(e) ←
∑N

n=1 β
(e−1)
n · Jf (e)(xn) 6= ynK; # weighted error rate

α(e) ← 1
2 log

(
1−ε̂(e)
ε̂(e)

)
; # “adaptive” weight for f (e)

for n ∈ {1, . . . , N} do
β
(e)
n ← 1

Z(e) · β
(e−1)
n · exp

(
−α(e) · yn · f (e)(xn)

)
; # update example weights

(Z(e) is a normalization constant)
end

end

return fboost(·) = sign
(∑E

e=1 α
(e) · f (e)(·)

)
;

Algorithm 1: AdaBoost
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Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

I α as a function of ε̂:
I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we

increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).
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Boosting Example

(This is a contrived example; it may take many more iterations to achieve ε̂ = 0.)
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Weak Learners

Formally, a weak learner is one with ε < 1
2 .

(These tend to be high-bias, low-variance classifiers.)
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Boosting: Make a Weak Learner Strong

Theory says: if you can find a weak learner every round, boosting’s training error will
eventually go to zero (as E → +∞).
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Boosting: Make a Weak Learner Strong
Theory says: if you can find a weak learner every round, boosting’s training error will
eventually go to zero (as E → +∞).

I This is non-obvious (proving it requires the use of telescoping sums):

training error︷ ︸︸ ︷
1

N

N∑
n=1

Jfboost(xn) 6= ynK ≤
1

N

N∑
n=1

exp

(
−yn ·

E∑
e=1

α(e) · f (e)(xn)

)
︸ ︷︷ ︸

“loss”

I Our update of α(e) on each round is provably the choice that minimizes this loss.
I Assuming each ε(e) < 1

2 , it’s possible to prove:

. . . ≤ exp−2
E∑
e=1

(
1

2
− ε̂(e)

)2

(i.e., as E goes up, training error decreases exponentially!)
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Theory and Practice

Boosting tends to be very robust to overfitting, with out-of-sample error continuing to
decrease even when training error stabilizes.

Eventually, it will overfit.

Theory gives some insight about this; PAC-style generalization bound is:

ε ≤ ε̂+ Õ

(√
E · d
N

)

where d measures the size of the hypothesis class.
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Boosting as Loss Minimization (Exponential Loss)

The above analysis leads to another insight: boosting is minimizing yet another loss
function!

Let a(x) denote a score (or activation function) for input x—the value whose sign we
take for binary classification.

exp (−y · a(x))

(Compare to log loss, log(1 + exp(−y · a(x))).)
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Boosting as Loss Minimization (Exponential Loss)

The above analysis leads to another insight: boosting is minimizing yet another loss
function!

Let a(x) denote a score (or activation function) for input x—the value whose sign we
take for binary classification.

exp (−y · a(x))

(Compare to log loss, log(1 + exp(−y · a(x))).)

If a were (sub)differentiable with respect to continuous parameters, you could directly
minimize exponential loss using SGD.
That’s not the case if W is, say, a decision tree learner.
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Palate Cleanser: Random Forests

Fix tree structure; randomly fill in features.

Do this E times; let them vote.

With large enough E, useless trees will cancel each other out.
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