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Data: D = <(:cn,yn)>7]:[:1, number of epochs E, weighted learner W
Result: classifier

B = <J{,, 1{77 cel %) # initialize example weights

forec {1,...,E} do
1@ W(D,B(Cfl)); # train the classifier on the weighted data
é®) 25:1 B,(Lefl) [ () # ynl; # weighted error rate

al®) «+ Llog (ifg(;)); # “adaptive” weight for f(¢)

for n € {1,. N} do
57(16) Z(e ﬁn - exp (—a("') Y - (O (zn)); # update example weights
(Z(©) is a normalization constant)

end

end

return fboost(') = sign (Ze 1 ale f(e ( ))
Algorithm 1: ADABoOST
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Notes about AdaBoost

» Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).
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Notes about AdaBoost

» Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).
> « as a function of é:
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Notes about AdaBoost

» Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

» « as a function of é: goes to 400 when error is low, zero as error increases to 0.5.

5/21



Notes about AdaBoost

» Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

» « as a function of é: goes to 400 when error is low, zero as error increases to 0.5.

» For examples we get right (f(¢)(x,,) = yn), the weight 3,, will decrease; we
increase the weights of examples we get wrong.
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Notes about AdaBoost

» Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

» « as a function of é: goes to 400 when error is low, zero as error increases to 0.5.
» For examples we get right (f(¢)(x,,) = yn), the weight 3,, will decrease; we
increase the weights of examples we get wrong.

» See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f(¢) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).



Boosting Example

(This is a contrived example; it may take many more iterations to achieve ¢ = 0.)
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Boosting Example

]
.I
o :...
co 09
o’ .°
o’ ®e :.o.o °
o o o ® ® ©
'Y ® 10 0
oo g0 0
@
}
: —>
[}

(This is a contrived example; it may take many more iterations to achieve ¢ = 0.)
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Boosting Example
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(This is a contrived example; it may take many more iterations to achieve € = 0.)
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Boosting Example
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(This is a contrived example; it may take many more iterations to achieve é = 0.)
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Boosting Example
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(This is a contrived example; it may take many more iterations to achieve é = 0.)
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Weak Learners

Formally, a weak learner is one with € < %
(These tend to be high-bias, low-variance classifiers.)
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Boosting: Make a Weak Learner Strong

Theory says: if you can find a weak learner every round, boosting's training error will
eventually go to zero (as E — +00).
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Boosting: Make a Weak Learner Strong
Theory says: if you can find a weak learner every round, boosting's training error will
eventually go to zero (as E — +0o0).

» This is non-obvious (proving it requires the use of telescoping sums):

training error

1 N 1 N E
N Z[[fboost(mn) 7é yn]] < N Zexp (yn : Za(‘f) . f(e)(l’n)>
n=1 n=1 e=1

“loss”
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training error

1 N 1 N E
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» Our update of @®) on each round is provably the choice that minimizes this loss.
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Boosting: Make a Weak Learner Strong
Theory says: if you can find a weak learner every round, boosting's training error will
eventually go to zero (as E — +0o0).

» This is non-obvious (proving it requires the use of telescoping sums):

training error

1 N 1 N E
N Z[[fboost(mn) 7é yn]] < N Z exp (yn : Z a(({) : f(e) (l‘n)>
n=1 n=1 e=1

“loss”

» Our update of @®) on each round is provably the choice that minimizes this loss.

» Assuming each €(®) < % it's possible to prove:

E 1 2
sep-2) (- a)
e=1

(i.e., as E goes up, training error decreases exponentially!)
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Theory and Practice

Boosting tends to be very robust to overfitting, with out-of-sample error continuing to
decrease even when training error stabilizes.

Eventually, it will overfit.

Theory gives some insight about this; PAC-style generalization bound is:

~ Ed
< € -
€ 6+O< N)

where d measures the size of the hypothesis class.
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Boosting as Loss Minimization (Exponential Loss)

The above analysis leads to another insight: boosting is minimizing yet another loss
function!

Let a(z) denote a score (or activation function) for input z—the value whose sign we
take for binary classification.

exp (—y - a(z))

(Compare to log loss, log(1 + exp(—y - a(x))).)
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Boosting as Loss Minimization (Exponential Loss)

The above analysis leads to another insight: boosting is minimizing yet another loss
function!

Let a(z) denote a score (or activation function) for input z—the value whose sign we
take for binary classification.

exp (—y - a(z))
(Compare to log loss, log(1 + exp(—y - a(z))).)

If a were (sub)differentiable with respect to continuous parameters, you could directly
minimize exponential loss using SGD.
That’s not the case if W is, say, a decision tree learner.
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Palate Cleanser: Random Forests

Fix tree structure; randomly fill in features.

Do this E times; let them vote.

With large enough E, useless trees will cancel each other out.
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