
Machine Learning (CSE 446):
Ensembles

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

November 29, 2017

1 / 24



Ensembles of Different Learners

Different learning algorithms tend to make different mistakes.

2 / 24



Ensembles of Different Learners

Different learning algorithms tend to make different mistakes.

One strategy to get better predictions is to train different learning algorithms on the
same data, and let them vote.

3 / 24



Ensembles of Different Learners

Different learning algorithms tend to make different mistakes.

One strategy to get better predictions is to train different learning algorithms on the
same data, and let them vote.

For a colleciton of K classifiers that predict y ∈ {−1,+1}:

fensemble(x) = sign

(
K∑
k=1

fk(x)

)

(For regression, take the mean.)

4 / 24



Ensembles of Different Learners

Different learning algorithms tend to make different mistakes.

One strategy to get better predictions is to train different learning algorithms on the
same data, and let them vote.

For a colleciton of K classifiers that predict y ∈ {−1,+1}:

fensemble(x) = sign

(
K∑
k=1

fk(x)

)

(For regression, take the mean.)

You should recall from the voted perceptron that letting a collection of classifiers vote
can offer a richer decision boundary than any individual classifier offers.

5 / 24



Theoretical View

Ensembles tend to reduce variance—if your learning algorithms are sensitive to small
changes in the training data, ensembling can help.

6 / 24



Theoretical View

Ensembles tend to reduce variance—if your learning algorithms are sensitive to small
changes in the training data, ensembling can help.

This leads to a different kind of ensemble: train on different datasets.

7 / 24



Theoretical View

Ensembles tend to reduce variance—if your learning algorithms are sensitive to small
changes in the training data, ensembling can help.

This leads to a different kind of ensemble: train on different datasets.

Where do we get different datasets?

8 / 24



Data: D = 〈(xn, yn)〉Nn=1, number of bootstrap samples required B
Result: Resampled datasets D̃1, . . . , D̃B

for b ∈ {1, . . . , B} do
for n ∈ {1, . . . , N} do

sample i uniformly at random from {1, . . . , N};
add (xi, yi) to D̃b;

end

end

return D̃1, . . . , D̃B;
Algorithm 1: BootstrapResampling

9 / 24



Bootstrap Samples

They will be similar . . . but not too similar.

10 / 24



Bootstrap Samples

They will be similar . . . but not too similar.

Instance n will be missing from a given D̃b with probability (1− 1
N )N , which tends to

1
e ≈ 0.3679 as N gets large.

11 / 24



Bootstrap Samples

They will be similar . . . but not too similar.

Instance n will be missing from a given D̃b with probability (1− 1
N )N , which tends to

1
e ≈ 0.3679 as N gets large.

This means that in any given D̃b, only about two thirds of the training examples will
appear!

12 / 24



Bootstrap Samples

They will be similar . . . but not too similar.

Instance n will be missing from a given D̃b with probability (1− 1
N )N , which tends to

1
e ≈ 0.3679 as N gets large.

This means that in any given D̃b, only about two thirds of the training examples will
appear!

Why is it called “bootstrap”?

13 / 24



Bagging: Ensembles of the Same Learner

1. Apply BootstrapResampling to D, creating datasets D̃1, . . . , D̃B.

2. Apply your learning algorithm to each D̃b.

3. Let them vote.

14 / 24



Bagging: Ensembles of the Same Learner

1. Apply BootstrapResampling to D, creating datasets D̃1, . . . , D̃B.

2. Apply your learning algorithm to each D̃b.

3. Let them vote.

You can think of bagging as a variance-reducing technique; it tends to have similar
benefits to regularization.

15 / 24



Boosting

Boosting (not to be confused with bootstrapping, discussed earlier!) is a family of
sophisticated techniques for building an ensemble.

16 / 24



Boosting

Boosting (not to be confused with bootstrapping, discussed earlier!) is a family of
sophisticated techniques for building an ensemble.

We’ll consider one particular method called AdaBoost (for “adaptive boosting”) that
has some interesting theoretical properties and is widely used.

17 / 24



Data: D = 〈(xn, yn)〉Nn=1, number of epochs E, weighted learner W
Result: classifier
β(0) = 〈 1N ,

1
N , . . . ,

1
N 〉; # initialize example weights

for e ∈ {1, . . . , E} do
f (e) ←W(D,β(e−1)); # train the classifier on the weighted data

ε̂(e) ←
∑N

n=1 β
(e−1)
n · Jf (e)(xn) 6= ynK; # weighted error rate

α(e) ← 1
2 log

(
1−ε̂(e)
ε̂(e)

)
; # “adaptive” weight for f (e)

for n ∈ {1, . . . , N} do
β
(e)
n ← 1

Z(e) · β
(e−1)
n · exp

(
−α(e) · yn · f (e)(xn)

)
; # update example weights

(Z(e) is a normalization constant)
end

end

return fboost(·) = sign
(∑E

e=1 α
(e) · f (e)(·)

)
;

Algorithm 2: AdaBoost

18 / 24



Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

I α as a function of ε̂:
I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we

increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).

19 / 24



Notes about AdaBoost
I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is

often called a weak learner (definition comes later).
I α as a function of ε̂:

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

error

w
ei
gh
t

I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we
increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).

20 / 24



Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

I α as a function of ε̂: goes to +∞ when error is low, zero as error increases to 0.5.

I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we
increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).

21 / 24



Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

I α as a function of ε̂: goes to +∞ when error is low, zero as error increases to 0.5.

I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we
increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).

22 / 24



Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

I α as a function of ε̂: goes to +∞ when error is low, zero as error increases to 0.5.

I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we
increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).

23 / 24



Formula for β
(e)
n

β(e)n ←
1

Z(e)
· β(e−1)

n · exp
(
−α(e) · yn · f (e)(xn)

)
where Z(e) =

N∑
i=1

β
(e−1)
i · exp

(
−α(e) · yi · f (e)(xi)

)
(Z(e) forces the sum

∑N
n=1 β

(e)
n = 1.)

24 / 24


