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Ensembles of Different Learners

Different learning algorithms tend to make different mistakes.
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For a colleciton of K classifiers that predict y ∈ {−1,+1}:

fensemble(x) = sign

(
K∑
k=1

fk(x)

)

(For regression, take the mean.)
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Different learning algorithms tend to make different mistakes.

One strategy to get better predictions is to train different learning algorithms on the
same data, and let them vote.

For a colleciton of K classifiers that predict y ∈ {−1,+1}:

fensemble(x) = sign

(
K∑
k=1

fk(x)

)

(For regression, take the mean.)

You should recall from the voted perceptron that letting a collection of classifiers vote
can offer a richer decision boundary than any individual classifier offers.
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Theoretical View

Ensembles tend to reduce variance—if your learning algorithms are sensitive to small
changes in the training data, ensembling can help.

6 / 24



Theoretical View

Ensembles tend to reduce variance—if your learning algorithms are sensitive to small
changes in the training data, ensembling can help.

This leads to a different kind of ensemble: train on different datasets.

7 / 24



Theoretical View

Ensembles tend to reduce variance—if your learning algorithms are sensitive to small
changes in the training data, ensembling can help.

This leads to a different kind of ensemble: train on different datasets.

Where do we get different datasets?
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Data: D = 〈(xn, yn)〉Nn=1, number of bootstrap samples required B
Result: Resampled datasets D̃1, . . . , D̃B

for b ∈ {1, . . . , B} do
for n ∈ {1, . . . , N} do

sample i uniformly at random from {1, . . . , N};
add (xi, yi) to D̃b;

end

end

return D̃1, . . . , D̃B;
Algorithm 1: BootstrapResampling
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Bootstrap Samples

They will be similar . . . but not too similar.
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Instance n will be missing from a given D̃b with probability (1− 1
N )N , which tends to

1
e ≈ 0.3679 as N gets large.
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Bootstrap Samples

They will be similar . . . but not too similar.

Instance n will be missing from a given D̃b with probability (1− 1
N )N , which tends to

1
e ≈ 0.3679 as N gets large.

This means that in any given D̃b, only about two thirds of the training examples will
appear!

Why is it called “bootstrap”?
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Bagging: Ensembles of the Same Learner

1. Apply BootstrapResampling to D, creating datasets D̃1, . . . , D̃B.

2. Apply your learning algorithm to each D̃b.

3. Let them vote.
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Bagging: Ensembles of the Same Learner

1. Apply BootstrapResampling to D, creating datasets D̃1, . . . , D̃B.

2. Apply your learning algorithm to each D̃b.

3. Let them vote.

You can think of bagging as a variance-reducing technique; it tends to have similar
benefits to regularization.
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Boosting

Boosting (not to be confused with bootstrapping, discussed earlier!) is a family of
sophisticated techniques for building an ensemble.
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Boosting

Boosting (not to be confused with bootstrapping, discussed earlier!) is a family of
sophisticated techniques for building an ensemble.

We’ll consider one particular method called AdaBoost (for “adaptive boosting”) that
has some interesting theoretical properties and is widely used.
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Data: D = 〈(xn, yn)〉Nn=1, number of epochs E, weighted learner W
Result: classifier
β(0) = 〈 1N ,

1
N , . . . ,

1
N 〉; # initialize example weights

for e ∈ {1, . . . , E} do
f (e) ←W(D,β(e−1)); # train the classifier on the weighted data

ε̂(e) ←
∑N

n=1 β
(e−1)
n · Jf (e)(xn) 6= ynK; # weighted error rate

α(e) ← 1
2 log

(
1−ε̂(e)
ε̂(e)

)
; # “adaptive” weight for f (e)

for n ∈ {1, . . . , N} do
β
(e)
n ← 1

Z(e) · β
(e−1)
n · exp

(
−α(e) · yn · f (e)(xn)

)
; # update example weights

(Z(e) is a normalization constant)
end

end

return fboost(·) = sign
(∑E

e=1 α
(e) · f (e)(·)

)
;

Algorithm 2: AdaBoost
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Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
often called a weak learner (definition comes later).

I α as a function of ε̂:
I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we

increase the weights of examples we get wrong.

I See the book for more insight on what happens on the first epoch with a very simple
W. Each successive f (e) is intended to work harder wherever previous classifiers
have been failing (hence, “adaptive”).
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I For examples we get right (f (e)(xn) = yn), the weight βn will decrease; we
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20 / 24



Notes about AdaBoost

I Typically, W is a shallow decision tree, or a linear classifier. In the literature, it is
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Formula for β
(e)
n

β(e)n ←
1

Z(e)
· β(e−1)

n · exp
(
−α(e) · yn · f (e)(xn)

)
where Z(e) =

N∑
i=1

β
(e−1)
i · exp

(
−α(e) · yi · f (e)(xi)

)
(Z(e) forces the sum

∑N
n=1 β

(e)
n = 1.)
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