
Machine Learning (CSE 446):
Expectation-Maximization

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

December 4, 2017

1 / 27



Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be a test set with correct classes y.

Two methods you saw earlier in this course:

I K-means clustering

I Principal components analysis (reduce dimensionality of each instance)
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Näıve Bayes Illustrated
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Näıve Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

p(Y = +1) = π

p(Y = −1) = 1− π

2. For each feature Xj :
I Sample Xj according to a Bernoulli distribution where:

p(Xj = 1 | Y = y) = θXj |y

p(Xj = 0 | Y = y) = 1− θXj |y
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Näıve Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

p(Y = +1) = π

p(Y = −1) = 1− π

2. For each feature Xj :
I Sample Xj according to a Bernoulli distribution where:

p(Xj = 1 | Y = y) = θXj |y

p(Xj = 0 | Y = y) = 1− θXj |y

1 + 2d parameters to estimate: π, {θXj |+1, θXj |−1}dj=1.
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Näıve Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter π, if the observations are o1, . . . , oN :

π̂ =
count(+1)

count(+1) + count(−1)
=
|{n : on = +1}|

N
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count(B = −1)
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So for näıve Bayes’ parameters:

I π̂ =
|{n : yn = +1}|

N
=
N+

N

I ∀j ∈ {1, . . . , d},∀y ∈ {−1,+1}:

θ̂j|y =
|{n : yn = y ∧ xn[j] = 1}|

|{n : yn = y}|
=

count(y, φj = 1)

count(y)
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Back to Unsupervised

All of the above assumed that your data included labels. Without labels, you can’t
estimate parameters.
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Back to Unsupervised

All of the above assumed that your data included labels. Without labels, you can’t
estimate parameters.

Or can you?

Interesting insight: if you already had the parameters, you could guess the labels.
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Guessing the Labels (Version 1)

Suppose we have the parameters, π and all θj|y.

pπ,θ(+1,x) = π ·
d∏
j=1

θ
x[j]
j|+1 · (1− θj|+1)

1−x[j]

pπ,θ(−1,x) = (1− π) ·
d∏
j=1

θ
x[j]
j|−1 · (1− θj|−1)

1−x[j]

ŷ =

{
+1 if pπ,θ(+1,x) > pπ,θ(−1,x)
−1 otherwise
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Guessing the Labels (Version 2)
Suppose we have the parameters, π and all θj|y.

pπ,θ(+1 | x) =
pπ,θ(+1,x)

pπ,θ(x)

=

π ·
d∏
j=1

θ
x[j]
j|+1 · (1− θj|+1)

1−x[j]

pπ,θ(x)

=

π ·
d∏
j=1

θ
x[j]
j|+1 · (1− θj|+1)

1−x[j]

π · d∏
j=1

θ
x[j]
j|+1 · (1− θj|+1)

1−x[j]

+

(1− π) ·
d∏
j=1

θ
x[j]
j|−1 · (1− θj|−1)

1−x[j]
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Guessing the Labels (Version 2)

Suppose we have the parameters, π and all θj|y.

pπ,θ(+1 | x)

Count xn fractionally as a positive example with “soft count” pπ,θ(+1 | xn), and as a
negative example with soft count pπ,θ(−1 | xn).
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Guessing the Labels (Version 2)

Suppose we have the parameters, π and all θj|y.

pπ,θ(+1 | x)

Count xn fractionally as a positive example with “soft count” pπ,θ(+1 | xn), and as a
negative example with soft count pπ,θ(−1 | xn).

Ñ+ =

N∑
n=1

pπ,θ(+1 | xn)

Ñ− =

N∑
n=1

pπ,θ(−1 | xn)
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Chicken/Egg

If only we had the labels we could estimate the parameters (MLE).

If only we had the parameters, we could guess the labels (previous slides showed two
ways to do it, “hard” and “soft”).
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Chicken/Egg

If only we had the labels we could estimate the parameters (MLE).

(Really we only need counts of “events” like Y = +1 or Y = −1 and φj(X) = 0) .)

If only we had the parameters, we could guess the labels (previous slides showed two
ways to do it, “hard” and “soft”).
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A Bit of Notation and Terminology

I A model family, denoted M, is the specification of our probabilistic model
except for the parameter values

I E.g., “näıve Bayes with these particular d binary features.”

I General notation for the entire set of parameters that you’d need to estimate to
use M: Θ

I Probability of some r.v. R under model family M with parameters Θ:
p(R | M(Θ))

I Events: countable things that can happen in the probabilistic story, like Y = +1

or Y = −1 and φj(X) = 0)
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Expectation Maximization

Data: D = 〈xn〉Nn=1, probabilistic model family M, number of epochs E, initial
parameters Θ(0)

Result: parameters Θ
for e ∈ {1, . . . , E} do

# E step
for n ∈ {1, . . . , N} do

calculate “soft counts” under the assumption that p(Yn | M(Θ(e−1)));
end
# M step
Θ(e) ← argmaxΘ p(soft counts | M(Θ)) # (MLE);

end

return Θ(E);
Algorithm 1: Expectation-Maximization, a general pattern for probabilistic learn-
ing (i.e., estimating parameters of a probabilistic model) with incomplete data.
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The following slides were added after lecture.
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Theory?

It’s possible to show that EM is iteratively improving the log-likelihood of the training
data, so in some sense it is trying to find:

argmax
π,θ

N∏
n=1

pπ,θ(xn) = argmax
π,θ

N∏
n=1

∑
y

pπ,θ(xn, y)

This is the marginal probability of the observed part of the data.

The other parts (here, the random variable Y ), are called hidden or latent variables.

In general, the above objective is not concave, so the best you can hope for is a local
optimum.
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Variations on EM

I EM is usually taught first for Gaussian mixture models; you can apply it to any
incomplete data setting where you have a probabilistic model family M.

I You can start with an M step, if you have a good way to initialize the soft counts
instead of parameters.

I EM with a mix of labeled and unlabeled data (hard counts for labeled examples,
soft counts for unlabeled ones).

I EM is commonly used with more complex Y (multiclass, or structured prediction).

I Self-training: use hard counts instead of soft counts. Does not require a
probabilistic learner!

25 / 27



Self Training

Data: D = 〈xn〉Nn=1, supervised learning algorithm A, number of epochs E, initial
classifier f (0)

Result: classifier f
for e ∈ {1, . . . , E} do

# E-like step
for n ∈ {1, . . . , N} do

ŷ
(e)
n ← f (e−1)(xn)

end
# M-like step

f (e) ← A
(
〈(xn, ŷ(e)n )〉Nn=1

)
;

end

return f (E);
Algorithm 2: SelfTraining, a general pattern for unsupervised learning.

26 / 27



Practical Advice

When EM succeeds, it seems to be because:

I The model M is a reasonable reflection of the real-world data-generating process.

I The parameters or soft counts are well-initialized. In some research areas, EM
iterations are applied to a series of models M1,M2, . . ., and each Mt is used to
calculate soft counts for the next Mt+1.

It’s wise to run EM with multiple random initializations; take the solution that has the
largest marginal likelihood of the training data (or the development data).
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