Machine Learning (CSE 446): Decision Trees (continued)

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

October 2, 2017

Decision Tree: Making a Prediction

Data: decision tree t, input example x**Result**: predicted class if t has the form LEAF(y) then return y;

else

 $\begin{array}{c|c} \# t.\phi \text{ is the feature associated with } t; \\ \# t.\text{child}(v) \text{ is the subtree for value } v; \\ \text{return } \text{DTREETEST}(t.\text{child}(t.\phi(x)), x)); \\ \text{end} \end{array}$

Algorithm 1: DTREETEST

Greedily Building a Decision Tree (Binary Features)

Data: data D, feature set Φ

Result: decision tree

if all examples in D have the same label y, or Φ is empty and y is the best guess then return LEAF(y);

else

```
for each feature \phi in \Phi do

partition D into D_0 and D_1 based on \phi-values;

let mistakes(\phi) = (non-majority answers in D_0) + (non-majority answers in

D_1);

end

let \phi^* be the feature with the smallest number of mistakes;

return NODE(\phi^*, {0 \rightarrow DTREETRAIN(D_0, \Phi \setminus {\phi^*}}), 1 \rightarrow

DTREETRAIN(D_1, \Phi \setminus {\phi^*}});

end
```

Algorithm 2: DTREETRAIN

Danger: Overfitting

depth of the decision tree

• Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y,\hat{y}) = \llbracket y \neq \hat{y} \rrbracket$$

• Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y,\hat{y}) = \llbracket y \neq \hat{y} \rrbracket$$

▶ Let D(x, y) define the true probability of input/output pair (x, y), in "nature."
We never "know" this distribution.

• Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y,\hat{y}) = [\![y \neq \hat{y}]\!]$$

- ▶ Let D(x, y) define the true probability of input/output pair (x, y), in "nature." We never "know" this distribution.
- The training data $D = \langle (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N) \rangle$ are assumed to be i.i.d. samples from \mathcal{D} .

• Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y,\hat{y}) = \llbracket y \neq \hat{y} \rrbracket$$

- ▶ Let D(x, y) define the true probability of input/output pair (x, y), in "nature."
 We never "know" this distribution.
- The training data $D = \langle (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N) \rangle$ are assumed to be i.i.d. samples from \mathcal{D} .
- ► The space of classifiers we're considering is F; f is a classifier from F, chosen by our learning algorithm.

Overfitting, More Formally

• Classifier *f*'s average loss on **training data**:

$$\hat{\epsilon}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

Overfitting, More Formally

• Classifier *f*'s average loss on **training data**:

$$\hat{\epsilon}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

► Classifier *f*'s **true** expected loss:

$$\epsilon(f) = \sum_{(x,y)} \mathcal{D}(x,y) \cdot \ell(y,f(x)) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(y,f(x))]$$

Overfitting, More Formally

• Classifier *f*'s average loss on **training data**:

$$\hat{\epsilon}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

► Classifier *f*'s **true** expected loss:

$$\epsilon(f) = \sum_{(x,y)} \mathcal{D}(x,y) \cdot \ell(y,f(x)) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(y,f(x))]$$

► *f* has overfit *D* when:

$$\exists f' \in \mathcal{F} \text{ s.t. } \hat{\epsilon}(f) < \hat{\epsilon}(f') \wedge \epsilon(f') < \epsilon(f)$$

This is the fundamental problem of ML.

Inductive, Supervised Machine Learning

- \blacktriangleright Input: loss function ℓ and training data D drawn i.i.d. from $\mathcal D$
- Output: f such that $\epsilon(f)$ is low over \mathcal{D} , with respect to ℓ

Never forget that $\epsilon(f) \neq \hat{\epsilon}(f)$.

Is your training data D really drawn from \mathcal{D} ?

Back to decision trees ...

<ロト < 部 > < 言 > < 言 > こ き < こ > こ ? へ (~ 13/33

• Set a maximum tree depth d_{max} .

• Set a maximum tree depth d_{max} .

 \blacktriangleright Only consider splits that decrease error by at least some $\Delta.$

• Set a maximum tree depth d_{max} .

• Only consider splits that decrease error by at least some Δ .

• Only consider splitting a node with more than N_{min} examples.

• Set a maximum tree depth d_{max} .

 \blacktriangleright Only consider splits that decrease error by at least some $\Delta.$

• Only consider splitting a node with more than N_{min} examples.

In each case, we have a hyperparameter $(d_{max}, \Delta, N_{min})$, which you should tune on development data.

• Build a big tree (i.e., let it overfit), call it t_0 .

• Build a big tree (i.e., let it overfit), call it t_0 .

For i ∈ {1,..., |t₀|}: greedily choose a set of sibling-leaves in t_{i-1} to collapse that increases error the least; collapse to produce t_i.

• Build a big tree (i.e., let it overfit), call it t_0 .

For i ∈ {1,..., |t₀|}: greedily choose a set of sibling-leaves in t_{i-1} to collapse that increases error the least; collapse to produce t_i.

(Alternately, collapse the split whose contingency table is least surprising under chance assumptions.)

• Build a big tree (i.e., let it overfit), call it t_0 .

For i ∈ {1,..., |t₀|}: greedily choose a set of sibling-leaves in t_{i-1} to collapse that increases error the least; collapse to produce t_i.

(Alternately, collapse the split whose contingency table is least surprising under chance assumptions.)

• Choose the t_i that performs best on development data.

More Things to Know

Instead of using the number of mistakes, we often use information-theoretic quantities to choose the next feature.

More Things to Know

- Instead of using the number of mistakes, we often use information-theoretic quantities to choose the next feature.
- For continuous-valued features, we use thresholds, e.g., $\phi(x) \leq \tau$. In this case, you must choose τ . If the sorted values of ϕ are $\langle v_1, v_2, \ldots, v_N \rangle$, you only need to consider $\tau \in \left\{ \frac{v_n + v_{n+1}}{2} \right\}_{n=1}^{N-1}$ (midpoints between consecutive feature values).

More Things to Know

- Instead of using the number of mistakes, we often use information-theoretic quantities to choose the next feature.
- For continuous-valued features, we use thresholds, e.g., $\phi(x) \leq \tau$. In this case, you must choose τ . If the sorted values of ϕ are $\langle v_1, v_2, \dots, v_N \rangle$, you only need to consider $\tau \in \left\{ \frac{v_n + v_{n+1}}{2} \right\}_{n=1}^{N-1}$ (midpoints between consecutive feature values).
- ► For continuous-valued **outputs**, what value makes sense as the prediction at a leaf? What loss should we use instead of [[y ≠ ŷ]]?

Machine Learning (CSE 446): Limits of Learning

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

October 2, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Bayes Optimal Classifier

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

The Bayes Optimal Classifier

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

Theorem: The Bayes optimal classifier achieves minimal zero/one error $(\ell(y, \hat{y}) = [\![y \neq \hat{y}]\!])$ of any deterministic classifier.

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f'(x)).$

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_{y} \mathcal{D}(x,y)\right) - \mathcal{D}(x,f'(x)).$

Probability that $f^{(BO)}$ makes an error on this input: $\left(\sum_{y} \mathcal{D}(x,y)\right) - \mathcal{D}(x,f^{(BO)}(x))$.

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f'(x))$. Probability that $f^{(BO)}$ makes an error on this input: $\left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f^{(BO)}(x))$.

By definition,

$$\mathcal{D}(x, f^{(\mathsf{BO})}(x)) = \max_{y} \mathcal{D}(x, y) \ge \mathcal{D}(x, f'(x))$$
$$\Rightarrow \left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f^{(\mathsf{BO})}(x)) \le \left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f'(x))$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の < ご 31/33

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f'(x))$. Probability that $f^{(BO)}$ makes an error on this input: $\left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f^{(BO)}(x))$.

By definition,

$$\mathcal{D}(x, f^{(\mathsf{BO})}(x)) = \max_{y} \mathcal{D}(x, y) \ge \mathcal{D}(x, f'(x))$$
$$\Rightarrow \left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f^{(\mathsf{BO})}(x)) \le \left(\sum_{y} \mathcal{D}(x, y)\right) - \mathcal{D}(x, f'(x))$$

This must hold for all x. Hence f' is no better than $f^{(BO)}$.

One Limit of Learning

You cannot do better than $\epsilon(f^{\text{BO}})$.