Machine Learning (CSE 446):
Decision Trees (continued)

Noah Smith
© 2017

University of Washington
nasmith@cs.washington.edu

October 2, 2017

Decision Tree: Making a Prediction

root
n:p

<>

IWOIDO

nl:pl

"10°P10

M11°P11

>

<>

0
"100°P100

1

"101°P101

0

"110°P110

1
M111°P111

Data: decision tree t, input example x

Result: predicted class

if ¢ has the form LEAF(y) then

‘ return v,

else
t.¢ is the feature associated with ¢;
t.child(v) is the subtree for value v;
return DTREETEST(¢.child(t.¢(x)), z));

end
Algorithm 1: DTREETEST

33

Greedily Building a Decision Tree (Binary Features)

Data: data D, feature set &
Result: decision tree
if all examples in D have the same label y, or ® is empty and y is the best guess then
| return LEAF(y);
else
for each feature ¢ in ® do
partition D into Dy and D; based on ¢-values;
let mistakes(¢) = (non-majority answers in Dy) + (non-majority answers in
Dy);
end
let ¢* be the feature with the smallest number of mistakes;
return NODE(¢*, {0 — DTREETRAIN(Dy, @ \ {¢*}), 1 —
DTREETRAIN(Dy, @\ {¢*})});
end

Algorithm 2: DTREETRAIN

Danger: Overfitting

error rate
(lower is better)

overfitting
———————— >

unseen data

training data

-
depth of the decision tree

33

Some Notation

» Let £ be a loss function; ¢(y,y) is what we lose by outputting § when y is the
correct output. For classification:

Uy, 9) = [y # 9]

5/33

Some Notation

» Let £ be a loss function; ¢(y,y) is what we lose by outputting § when y is the
correct output. For classification:

Uy, 9) = [y # 9]

» Let D(x,y) define the true probability of input/output pair (z,y), in “nature.
We never “know” this distribution.

33

Some Notation

» Let £ be a loss function; ¢(y,y) is what we lose by outputting § when y is the
correct output. For classification:

Uy, 9) = [y # 9]

» Let D(x,y) define the true probability of input/output pair (z,y), in “nature.
We never “know” this distribution.

» The training data D = ((x1,91), (x2,¥2), ..., (zN,yn)) are assumed to be
i.i.d. samples from D.

33

Some Notation

» Let £ be a loss function; ¢(y,y) is what we lose by outputting § when y is the
correct output. For classification:

Uy, 9) = [y # 9]

» Let D(x,y) define the true probability of input/output pair (z,y), in “nature.
We never “know” this distribution.

» The training data D = ((x1,91), (x2,¥2), ..., (zN,yn)) are assumed to be
i.i.d. samples from D.

» The space of classifiers we're considering is F; f is a classifier from JF, chosen by
our learning algorithm.

33

Overfitting, More Formally

» Classifier f's average loss on training data:

1 N
é(f) = N Zg(ym f(zn))
n=1

33

Overfitting, More Formally

» Classifier f's average loss on training data:

1 N
= anlaymf(a:n))

» Classifier f's true expected loss:

= ZD(m,y) Uy, f(7)) = Egy)~pll(y, f(z))]

10/33

Overfitting, More Formally

» Classifier f's average loss on training data:

1 N
= N;aymﬂxn))

» Classifier f's true expected loss:

= D(z,y) - £y, f(z)) = Egy)pll(y, f(z))

» f has overfit D when:

Af e Fst é(f) <&(f) ne(f) <e(f)

This is the fundamental problem of ML.

11/33

Inductive, Supervised Machine Learning

» Input: loss function £ and training data D drawn i.i.d. from D
» Output: f such that €(f) is low over D, with respect to ¢

Never forget that €(f) # €(f).

Is your training data D really drawn from D?

12/33

Back to decision trees . ..

13/33

Avoiding Overfitting by Stopping Early

» Set a maximum tree depth d,,q..

14 /33

Avoiding Overfitting by Stopping Early

» Set a maximum tree depth d,,q..

» Only consider splits that decrease error by at least some A.

15/33

Avoiding Overfitting by Stopping Early

» Set a maximum tree depth d,,q..

» Only consider splits that decrease error by at least some A.

» Only consider splitting a node with more than N,,;, examples.

16 /33

Avoiding Overfitting by Stopping Early

» Set a maximum tree depth d,;4z.

» Only consider splits that decrease error by at least some A.

» Only consider splitting a node with more than N,,;, examples.

In each case, we have a hyperparameter (d,,qz, A, Npnin), which you should tune on
development data.

17/33

Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it to.

18/33

Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it to.

» Forie {1,...,|to|}: greedily choose a set of sibling-leaves in t;_; to collapse that
increases error the least; collapse to produce ;.

19/33

Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it to.

» Forie {l1,...,|to|}: greedily choose a set of sibling-leaves in t;_; to collapse that
increases error the least; collapse to produce ;.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

20/33

Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it to.

» Forie {l1,...,|to|}: greedily choose a set of sibling-leaves in t;_; to collapse that
increases error the least; collapse to produce ;.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

» Choose the t; that performs best on development data.

21/33

More Things to Know

» Instead of using the number of mistakes, we often use information-theoretic
quantities to choose the next feature.

22/33

More Things to Know

» Instead of using the number of mistakes, we often use information-theoretic
quantities to choose the next feature.

» For continuous-valued features, we use threshholds, e.g., ¢(z) < 7.
In this case, you must choose .

If the sorted values of ¢ are (v1,va,...,vn), you only need to consider

N-1
TE {%} (midpoints between consecutive feature values).
n=1

23/33

More Things to Know

» Instead of using the number of mistakes, we often use information-theoretic
quantities to choose the next feature.

» For continuous-valued features, we use threshholds, e.g., ¢(z) < 7.
In this case, you must choose .
If the sorted values of ¢ are (v1,va,...,vn), you only need to consider

N-1
TE {%} (midpoints between consecutive feature values).
n=1

» For continuous-valued outputs, what value makes sense as the prediction at a
leaf? What loss should we use instead of [y # ¢]?

24 /33

Machine Learning (CSE 446):

Limits of Learning

Noah Smith
© 2017

University of Washington
nasmith@cs.washington.edu

October 2, 2017

25/33

The Bayes Optimal Classifier

70 (z) = argmax D(z, y)
Yy

26 /33

The Bayes Optimal Classifier

F®9(z) = argmax D(z,)
)

Theorem: The Bayes optimal classifier achieves minimal zero/one error
(U(y,9) = [y # 9]) of any deterministic classifier.

27 /33

Proof

Consider (deterministic) f that claims to be better than f(B%) and x such that

fEO (@) # f'(2).

28 /33

Proof

Consider (deterministic) f” that claims to be better than f(B%) and x such that

FEON (@) # f'(2).

Probability that f’ makes an error on this input: (Zy D(m,y)) — D(z, f'(x)).

29 /33

Proof

Consider (deterministic) f that claims to be better than f(B%) and x such that

FEO (@) # f/(2).

Probability that f’ makes an error on this input: (Zy D(x,y)) — D(z, f'(z)).

Probability that f(B®) makes an error on this input: (Zy D(x,y)) — D(z, fBO)(z)).

30/33

Proof

Consider (deterministic) f that claims to be better than f(B%) and x such that

FEO (@) # f'(2).

Probability that f' makes an error on this input: (Zy D(az,y)) — D(z, f'(x)).

Probability that f(B®) makes an error on this input: (Zy D(:c,y)) — D(z, fBO)(z)).
By definition,

(Zmy) D(r. 150 (Zmy> D(e. /(z)

D(zx, fBO)(2)) = maxD(:c y) > D(x

31/33

Proof

Consider (deterministic) f” that claims to be better than f(B%) and x such that

FBO () # f'(x).
Probability that f’ makes an error on this input: (Zy D(x,y)) — D(z, f'(z)).

Probability that f(B®) makes an error on this input: (Zy D(a:,y)) — D(z, fBO)(z)).

By definition,

D(z, f®(x)) = max D(z,y) 2 D(z, f'(x))

(ZD:H/> D(x, B (x) (ZDwy> D(z, f'(x))

This must hold for all . Hence f is no better than f(BO),

32/33

One Limit of Learning

You cannot do better than e(fBO).

33/33

