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Decision Tree: Making a Prediction
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Data: decision tree t, input example x
Result: predicted class
if t has the form Leaf(y) then

return y;
else

# t.φ is the feature associated with t;
# t.child(v) is the subtree for value v;
return DTreeTest(t.child(t.φ(x)), x));

end
Algorithm 1: DTreeTest
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Greedily Building a Decision Tree (Binary Features)

Data: data D, feature set Φ
Result: decision tree
if all examples in D have the same label y, or Φ is empty and y is the best guess then

return Leaf(y);
else

for each feature φ in Φ do
partition D into D0 and D1 based on φ-values;
let mistakes(φ) = (non-majority answers in D0) + (non-majority answers in
D1);

end
let φ∗ be the feature with the smallest number of mistakes;
return Node(φ∗, {0 → DTreeTrain(D0,Φ \ {φ∗}), 1 →
DTreeTrain(D1,Φ \ {φ∗})});

end
Algorithm 2: DTreeTrain
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Danger: Overfitting

error rate
(lower is better)

depth of the decision tree

training data

unseen data

overfitting
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Some Notation

I Let ` be a loss function; `(y, ŷ) is what we lose by outputting ŷ when y is the
correct output. For classification:

`(y, ŷ) = Jy 6= ŷK

I Let D(x, y) define the true probability of input/output pair (x, y), in “nature.”
We never “know” this distribution.

I The training data D = 〈(x1, y1), (x2, y2), . . . , (xN , yN )〉 are assumed to be
i.i.d. samples from D.

I The space of classifiers we’re considering is F ; f is a classifier from F , chosen by
our learning algorithm.
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Overfitting, More Formally

I Classifier f ’s average loss on training data:

ε̂(f) =
1

N

N∑
n=1

`(yn, f(xn))

I Classifier f ’s true expected loss:

ε(f) =
∑
(x,y)

D(x, y) · `(y, f(x)) = E(x,y)∼D[`(y, f(x))]

I f has overfit D when:

∃f ′ ∈ F s.t. ε̂(f) < ε̂(f ′) ∧ ε(f ′) < ε(f)

This is the fundamental problem of ML.
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Inductive, Supervised Machine Learning

I Input: loss function ` and training data D drawn i.i.d. from D
I Output: f such that ε(f) is low over D, with respect to `

Never forget that ε(f) 6= ε̂(f).

Is your training data D really drawn from D?
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Back to decision trees . . .
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Avoiding Overfitting by Stopping Early

I Set a maximum tree depth dmax .

I Only consider splits that decrease error by at least some ∆.

I Only consider splitting a node with more than Nmin examples.
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Avoiding Overfitting by Stopping Early

I Set a maximum tree depth dmax .

I Only consider splits that decrease error by at least some ∆.

I Only consider splitting a node with more than Nmin examples.

In each case, we have a hyperparameter (dmax ,∆, Nmin), which you should tune on
development data.
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Avoiding Overfitting by Pruning

I Build a big tree (i.e., let it overfit), call it t0.

I For i ∈ {1, . . . , |t0|}: greedily choose a set of sibling-leaves in ti−1 to collapse that
increases error the least; collapse to produce ti.

I Choose the ti that performs best on development data.
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More Things to Know

I Instead of using the number of mistakes, we often use information-theoretic
quantities to choose the next feature.

I For continuous-valued features, we use threshholds, e.g., φ(x) ≤ τ .
In this case, you must choose τ .
If the sorted values of φ are 〈v1, v2, . . . , vN 〉, you only need to consider

τ ∈
{

vn+vn+1

2

}N−1

n=1
(midpoints between consecutive feature values).

I For continuous-valued outputs, what value makes sense as the prediction at a
leaf? What loss should we use instead of Jy 6= ŷK?

22 / 33



More Things to Know

I Instead of using the number of mistakes, we often use information-theoretic
quantities to choose the next feature.

I For continuous-valued features, we use threshholds, e.g., φ(x) ≤ τ .
In this case, you must choose τ .
If the sorted values of φ are 〈v1, v2, . . . , vN 〉, you only need to consider

τ ∈
{

vn+vn+1

2

}N−1

n=1
(midpoints between consecutive feature values).

I For continuous-valued outputs, what value makes sense as the prediction at a
leaf? What loss should we use instead of Jy 6= ŷK?
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The Bayes Optimal Classifier

f (BO)(x) = argmax
y
D(x, y)
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The Bayes Optimal Classifier

f (BO)(x) = argmax
y
D(x, y)

Theorem: The Bayes optimal classifier achieves minimal zero/one error
(`(y, ŷ) = Jy 6= ŷK) of any deterministic classifier.
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Proof

Consider (deterministic) f ′ that claims to be better than f (BO) and x such that
f (BO)(x) 6= f ′(x).
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This must hold for all x. Hence f ′ is no better than f (BO).
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One Limit of Learning

You cannot do better than ε(fBO).
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