Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased. E.g., reproducing already-biased judges’ decisions, or training on data collected only on people charged with crimes.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
 E.g., advertising that assumes binary categories like male/female, Democrat/Republican, etc.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
- The features might encode bias.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
- The features might encode bias.
 E.g., language translation systems that ignore context that disambiguates appropriate pronouns.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
- The features might encode bias.
- The loss function might encode bias.

Deployed systems that affect their own future inputs can create feedback loops and exacerbate their own biases.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
- The features might encode bias.
- The loss function might encode bias.
 E.g., if a minority class is infrequent, it may end up being ignored completely.
Bias in Data

- The real-world process that produced the labels, or the sample, might be biased.
- The design/definition of the task might encode bias.
- The features might encode bias.
- The loss function might encode bias.
- Deployed systems that affect their own future inputs can create feedback loops and exacerbate their own biases.
Bias in Data

▶ The real-world process that produced the labels, or the sample, might be biased.
▶ The design/definition of the task might encode bias.
▶ The features might encode bias.
▶ The loss function might encode bias.
▶ Deployed systems that affect their own future inputs can create feedback loops and exacerbate their own biases. E.g., spammers adapt to spam-filtering tools, changing the data distribution.
Fairness and Disparate Impact

U.S. labor and housing laws measure discrimination using a rule like this:

\[p(Y = +1 \mid G \neq \text{male}) \geq 0.8 \cdot p(Y = +1 \mid G = \text{male}) \]

and similarly for other protected attributes.
U.S. labor and housing laws measure discrimination using a rule like this:

$$p(Y = +1 \mid G \neq \text{male}) \geq 0.8 \cdot p(Y = +1 \mid G = \text{male})$$

and similarly for other protected attributes.

- Can we just take “male” (and other protected attributes) out of the feature set?
Fairness and Disparate Impact

U.S. labor and housing laws measure discrimination using a rule like this:

\[p(Y = +1 \mid G \neq \text{male}) \geq 0.8 \cdot p(Y = +1 \mid G = \text{male}) \]

and similarly for other protected attributes.

- Can we just take “male” (and other protected attributes) out of the feature set? (No.)
Fairness and Disparate Impact

U.S. labor and housing laws measure discrimination using a rule like this:

\[p(Y = +1 \mid G \neq \text{male}) \geq 0.8 \cdot p(Y = +1 \mid G = \text{male}) \]

and similarly for other protected attributes.

- Can we just take “male” (and other protected attributes) out of the feature set? (No.)
- Can we satisfy this rule and still obtain high accuracy?
Fairness and Disparate Impact

U.S. labor and housing laws measure discrimination using a rule like this:

\[
p(Y = +1 \mid G \neq \text{male}) \geq 0.8 \cdot p(Y = +1 \mid G = \text{male})
\]

and similarly for other protected attributes.

- Can we just take “male” (and other protected attributes) out of the feature set? (No.)
- Can we satisfy this rule and still obtain high accuracy?
- Are there other (better?) measurements of fairness?