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Unbalanced Data (Binary Classification)

Balanced data: p(Y = +1) ≈ p(Y = −1) ≈ 1
2 .

Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance
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2 .
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relevance

Some solutions:

1. Throw out negative examples until you achieve balance.

2. Down-weight negative examples until you achieve balance.

3. Modification to the hinge loss:

L(hinge)
n (w, b) = max{0,

formerly 1︷ ︸︸ ︷
cost(yn) −yn · (w · xn + b)}

cost(yn) =

{
α if yn = −1 (false positive)
β if yn = +1 (false negative)
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Balanced data: p(Y = +1) ≈ p(Y = −1) ≈ 1

2 .
Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance
Some solutions:

1. Throw out negative examples until you achieve balance.
2. Down-weight negative examples until you achieve balance. For example,

L(new)(x, y, parameters)← αJy=+1K · L(old)(x, y, parameters)

A similar effect can be achieved in SGD by sampling non-uniformly; assign 1
2N+

to

positive examples and 1
2N−

to negative examples.
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Multiclass Classification
Suppose you have a set of classes, Y, such that |Y| > 2.

1. See A5 for generalizations of familiar loss functions.

2. One-versus-all training: train |Y| binary classifiers, letting each y ∈ Y take a turn
as the positive class. Let a(y) be the activation function for the classifier where
{y → +1,Y \ {y} → −1}. Then define the classifier f : X → Y as:

f(x) = argmax
y∈Y

a(y)(x)

Theorem: error rate is at most (|Y| − 1) · ε̄, where ε̄ is the average error rate
among the binary classifiers.

3. All-versus-all (“tournament”): build

(
|Y|
2

)
classifiers, pairing every y, y′ ∈ Y.

Theorem: error rate is at most 2(|Y| − 1) · ε̄.
4. Tree-structured tournament. Theorem: error rate is at most dlog2 |Y|e · ε̄.
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{y → +1,Y \ {y} → −1}. Then define the classifier f : X → Y as:

f(x) = argmax
y∈Y

a(y)(x)

Theorem: error rate is at most (|Y| − 1) · ε̄, where ε̄ is the average error rate
among the binary classifiers. One bad classifier can ruin f ; in particular, watch
out for the more rare labels, and be sure to tune hyperparameters separately.
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Multiclass Classification
Suppose you have a set of classes, Y, such that |Y| > 2.

1. See A5 for generalizations of familiar loss functions.

2. One-versus-all training: train |Y| binary classifiers, letting each y ∈ Y take a turn
as the positive class. Let a(y) be the activation function for the classifier where
{y → +1,Y \ {y} → −1}. Then define the classifier f : X → Y as:

f(x) = argmax
y∈Y

a(y)(x)

Theorem: error rate is at most (|Y| − 1) · ε̄, where ε̄ is the average error rate
among the binary classifiers.

3. All-versus-all (“tournament”): build

(
|Y|
2

)
classifiers, pairing every y, y′ ∈ Y.

Theorem: error rate is at most 2(|Y| − 1) · ε̄.
4. Tree-structured tournament. Theorem: error rate is at most dlog2 |Y|e · ε̄.

Challenge: you must choose the tree.
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Tree-Structured Tournament for Multiclass Classification

f1: {y1, y2, y3, y4} vs. {y5, y6, y7, y8}

f2: {y1, y2} vs. {y3, y4} f3: {y5, y6} vs. {y7, y8}

f4: y1 vs. y2 f5: y3 vs. y4 f6: y5 vs. y6 f7: y7 vs. y8
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Ranking

Most common setup: xn = 〈qn,d〉, where qn is a query and d is a (fixed, universal) set
of documents {d1, . . . , dM}. Output yn is a ranking of d.
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Ranking

Most common setup: xn = 〈qn,d〉, where qn is a query and d is a (fixed, universal) set
of documents {d1, . . . , dM}. Output yn is a ranking of d.

Pairwise encoding: let xn,i,j be the features encoding the comparison of di with dj ,
under query qn.

Output: yn,i,j is +1 if di is more relevant to qn than dj ; −1 otherwise.

Training on the binary problem 〈(xn,i,j , yn,i,j)〉n∈{1,...,N};i,j∈{1,...,M makes sense when
the ranking is meant to separate relevant di from irrelevant di, known as “bipartite”
ranking.
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Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query q, that is highest for the most
relevant documents.
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Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query q, that is highest for the most
relevant documents.

Let σ : {1, . . . ,M} → R denote a document-scoring function; the true scoring function
for training example n is σn, and σ̂n is what we’ve estimated.

Let ω(i, j) be the nonnegative cost of putting something in position j when it belongs
in position i.
One example:

ω(i, j) =

{
1 if min(i, j) ≤ 10 and i 6= j
0 otherwise

(More in the book.)
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Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query q, that is highest for the most
relevant documents.

Let σ : {1, . . . ,M} → R denote a document-scoring function; the true scoring function
for training example n is σn, and σ̂n is what we’ve estimated.

Let ω(i, j) be the nonnegative cost of putting something in position j when it belongs
in position i.

Loss:

E(q,σ)∼D

 ∑
i,j:i 6=j

Jσ(i) < σ(j)K · Jσ̂(i) < σ̂(j)K · ω(i, j)


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Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query q, that is highest for the most
relevant documents.

Let σ : {1, . . . ,M} → R denote a document-scoring function; the true scoring function
for training example n is σn, and σ̂n is what we’ve estimated.

Let ω(i, j) be the nonnegative cost of putting something in position j when it belongs
in position i.

Loss:

E(q,σ)∼D

 ∑
i,j:i 6=j

Jσ(i) < σ(j)K · Jσ̂(i) < σ̂(j)K · ω(i, j)


Deriving a learning algorithm is left as an exercise. (See the book for an example.)
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