Machine Learning (CSE 446):

Beyond Binary Classification

Noah Smith
© 2017

University of Washington
nasmith@cs.washington.edu

November 20, 2017

25

Unbalanced Data (Binary Classification)

Balanced data: p(Y = +1) ~ p(Y = —-1) ~ 3.

Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance

Unbalanced Data (Binary Classification)
Balanced data: p(Y = +1) =~ p(Y = —1) ~ 3.

Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance

Some solutions:

Unbalanced Data (Binary Classification)
Balanced data: p(Y = +1) =~ p(Y = —1) ~ 3.

Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance

Some solutions:

1. Throw out negative examples until you achieve balance.

Unbalanced Data (Binary Classification)
Balanced data: p(Y = +1) =~ p(Y = —1) ~ 3.

Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance

Some solutions:
1. Throw out negative examples until you achieve balance.

2. Down-weight negative examples until you achieve balance.

Unbalanced Data (Binary Classification)
Balanced data: p(Y = +1) ~ p(Y = —1) ~ §
Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance
Some solutions:
1. Throw out negative examples until you achieve balance.
2. Down-weight negative examples until you achieve balance. For example,

L) (x, y, parameters) « alv=F11. L0 (x y parameters)

A similar effect can be achieved in SGD by sampling non-uniformly; assign ﬁ to
positive examples and 53— to negative examples.

Unbalanced Data (Binary Classification)
Balanced data: p(Y = +1) =~ p(Y = —1) ~ 3.

Examples where the fraction of positive examples is tiny: fraud detection, web page
relevance

Some solutions:
1. Throw out negative examples until you achieve balance.
2. Down-weight negative examples until you achieve balance.

3. Modification to the hinge loss:
formerly 1

. HH
nghmge) (W, b) _ maX{O, COSt(yn) —UYn - (w cXp + b)}

[a ify, =—1 (false positive)
cost(yn) = { B if y, = +1 (false negative)

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

25

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

1. See A5 for generalizations of familiar loss functions.

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

1. See A5 for generalizations of familiar loss functions.

2. One-versus-all training: train |)/| binary classifiers, letting each y €) take a turn
as the positive class. Let a(¥) be the activation function for the classifier where
{y = +1, Y\ {y} — —1}. Then define the classifier f : X — Y as:

f(x) = argmax a™ (z)
yey

Theorem: error rate is at most (|| — 1) - € where € is the average error rate
among the binary classifiers.

10/25

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

1. See A5 for generalizations of familiar loss functions.

2. One-versus-all training: train |)/| binary classifiers, letting each y €) take a turn
as the positive class. Let a(¥) be the activation function for the classifier where
{y = +1, Y\ {y} — —1}. Then define the classifier f : X —) as:

f(x) = argmax a™ (z)
yey

Theorem: error rate is at most (|| — 1) - € where € is the average error rate
among the binary classifiers. One bad classifier can ruin f; in particular, watch
out for the more rare labels, and be sure to tune hyperparameters separately.

11/25

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

1. See A5 for generalizations of familiar loss functions.

2. One-versus-all training: train |)/| binary classifiers, letting each y €) take a turn
as the positive class. Let a(¥) be the activation function for the classifier where
{y = +1, Y\ {y} — —1}. Then define the classifier f : X — Y as:

f(x) = argmax a™ (z)
yey

Theorem: error rate is at most (|| — 1) - € where € is the average error rate
among the binary classifiers.

V|
2

Theorem: error rate is at most 2(|])| — 1) - €.

3. All-versus-all (“tournament”): build classifiers, pairing every y,y' € V.

12 /25

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

1. See A5 for generalizations of familiar loss functions.

2. One-versus-all training: train |)/| binary classifiers, letting each y €) take a turn
as the positive class. Let a(¥) be the activation function for the classifier where
{y = +1, Y\ {y} — —1}. Then define the classifier f : X — Y as:

f(x) = argmax a™ (z)
yey

Theorem: error rate is at most (|| — 1) - € where € is the average error rate
among the binary classifiers.

V|
2

Theorem: error rate is at most 2(|])| — 1) - €.

3. All-versus-all (“tournament”): build classifiers, pairing every y,y' € V.

4. Tree-structured tournament. Theorem: error rate is at most [log, |V|] - €.

13/25

Multiclass Classification
Suppose you have a set of classes,), such that || > 2.

1. See A5 for generalizations of familiar loss functions.
2. One-versus-all training: train || binary classifiers, letting each y €) take a turn

as the positive class. Let a(¥) be the activation function for the classifier where
{y = +1, Y\ {y} = —1}. Then define the classifier f : X —) as:

f(x) = argmax a™ (z)
yey
Theorem: error rate is at most (|| — 1) - €, where € is the average error rate
among the binary classifiers.
V|
2
Theorem: error rate is at most 2(|]))| — 1) - €.

3. All-versus-all (“tournament”): build classifiers, pairing every 1,7/ €).

4. Tree-structured tournament. Theorem: error rate is at most [logy |V|] - €.
Challenge: you must choose the tree.

14 /25

Tree-Structured Tournament for Multiclass Classification

S A{wL, v2, y3, yA} vs. {45, 46, y7, y8}

N

Jor {yl, y2} vs. {43, y4} f3: {yb, y6} vs. {y7, 48}

N YN

Ty yl vs. g2 f5: y3 vs. 4 fg: Yo vs. Y6 J7 YT vs. 48

15/25

Ranking

Most common setup: x,, = (gn, d), where ¢, is a query and d is a (fixed, universal) set
of documents {di,...,dy}. Output y,, is a ranking of d.

16 /25

Ranking

Most common setup: x,, = (gn, d), where ¢, is a query and d is a (fixed, universal) set
of documents {di,...,dy}. Output y,, is a ranking of d.

Pairwise encoding: let x,,; ; be the features encoding the comparison of d; with d;,
under query qy.

17/25

Ranking

Most common setup: z, = (g, d), where g, is a query and d is a (fixed, universal) set
of documents {dy,...,dy}. Output y,, is a ranking of d.

Pairwise encoding: let x,,; ; be the features encoding the comparison of d; with d;,
under query qy.

Output: y,; ; is +1 if d; is more relevant to g, than d;; —1 otherwise.

18/25

Ranking

Most common setup: z,, = (g, d), where g, is a query and d is a (fixed, universal) set
of documents {dy,...,dy}. Output y,, is a ranking of d.

Pairwise encoding: let x,,; ; be the features encoding the comparison of d; with d;,
under query qy.

Output: yn; is +1 if d; is more relevant to g, than d;; —1 otherwise.

Training on the binary problem ((Xn i j, Yn.ij))ne{l,...N}si,je{1,...,m Makes sense when
the ranking is meant to separate relevant d; from irrelevant d;, known as “bipartite”
ranking.

19/25

Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query ¢, that is highest for the most
relevant documents.

20/25

Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query ¢, that is highest for the most
relevant documents.

Let 0 : {1,..., M} — R denote a document-scoring function; the true scoring function
for training example n is o, and &, is what we've estimated.

21/25

Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query ¢, that is highest for the most
relevant documents.

Let 0 : {1,..., M} — R denote a document-scoring function; the true scoring function
for training example n is o, and &, is what we've estimated.

Let w(i,j) be the nonnegative cost of putting something in position j when it belongs
in position 1.

22 /25

Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query g, that is highest for the most
relevant documents.

Let 0: {1,..., M} — R denote a document-scoring function; the true scoring function
for training example n is o, and &, is what we've estimated.

Let w(i,j) be the nonnegative cost of putting something in position j when it belongs
in position 1.
One example:

.| 1 ifmin(i,j) <10 and i # j
Wb, j) = { 0 otherwise

(More in the book.)

23 /25

Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query g, that is highest for the most
relevant documents.

Let 0: {1,..., M} — R denote a document-scoring function; the true scoring function
for training example n is o, and &,, is what we've estimated.

Let w(i,j) be the nonnegative cost of putting something in position j when it belongs
in position 4.

Loss:

q,o’)N’D Z [[U]] [[U() (])]] O.)(Z,])

1,5:1#£]

24 /25

Nuanced Ranking Problems

Intuitively, we want a scoring function, specific to query ¢, that is highest for the most
relevant documents.

Let 0: {1,..., M} — R denote a document-scoring function; the true scoring function
for training example n is o, and &, is what we've estimated.

Let w(i,j) be the nonnegative cost of putting something in position j when it belongs
in position 4.

Loss:

Egorp | Y [0() <a(i)]-[6() <6()]-w(i,j)

i,j:i#]

Deriving a learning algorithm is left as an exercise. (See the book for an example.)

25 /25

