
Assignment 2
CSE 446: Machine Learning

University of Washington

Due: October 24, 2017

You will submit the following files or documents for this homework, compressed into a gzipped
tarball named A2.tgz.

• Your report as a pdf file named A2.pdf containing answers to written questions. You must in-
clude the plots and explanation for programming questions (if required) in this document only.
We strongly recommend typesetting your scientific writing using LATEX. Some free tools that
might help: ShareLaTeX (www.sharelatex.com), TexStudio (Windows), MacTex (Mac),
TexMaker (cross-platform), and Detexify2 (online). If you want to type, but don’t know (and
don’t want to learn) LATEX, consider using a markdown editor with real-time preview and equa-
tion editing (e.g., stackedit.io, marxi.co). Writing solutions by hand is fine, as long as
they are neat; you will need to scan them into a single pdf.
Part of the training we aim to give you in this advanced class includes practice with technical
writing. Organize your report as neatly as possible, and articulate your thoughts as clearly as
possible. We prefer quality over quantity. Do not flood the report with tangential information
such as low-level documentation of your code that belongs in code comments or the README.
Similarly, when discussing the experimental results, do not copy and paste the entire system
output directly to the report. Instead, create tables and figures to organize the experimental
results.
• Python source code for the programming assignment. Please note that we will not accept

Jupyter notebooks. You will submit your code together with a neatly written README file to
instruct how to run your code with different settings (if applicable). We assume that you always
follow good practice of coding (commenting, structuring), and these factors are not central to
your grade.

You are welcome to use any Python libraries for data munging, visualization, and numerical
linear algebra. Examples includes Numpy, Pandas, and Matplotlib. You may not, however, use
Python machine learning libraries such as Scikit-Learn or TensorFlow. If in doubt, email the
instructors.
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1 Perceptron Exercise [20 points]
Recall that a perceptron learns a linear classifier with weight vector w. It predicts

ŷ = sign(w · x)

(We assume here that ŷ ∈ {+1,−1}. Also, note that we are not using a bias weight b.) When the
perceptron makes a mistake on the nth training example, it updates the weights using the formula

w← w + ynxn

Imagine that we have each xn ∈ R2, and we encounter the following data points

x[1] x[2] y
1 1 1
2 -1 -1
-3 -1 -1
-3 1 1

1. Starting with w = [0 0]>, use the perceptron algorithm to learn on the data points in the order
from top to bottom. Show the perceptron’s linear decision boundary after observing each data
point in the graphs below. Be sure to show which side is classified as positive. [10 points]
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2. Does our learned perceptron maximize the margin between the training data and the decision
boundary? If not, draw the maximum-margin decision boundary on the graph below. [5 points]
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3. Assume that we continue to collect data and train the perceptron. If all data we see (including
the points we just trained on) are linearly separable separable with margin γ = 0.5 and have
maximum norm ‖x‖2 ≤ 5, what is the maximum number of mistakes we can make on future
data? [5 points]

2 Implementation: Perceptron [70 points]
Implement the perceptron learning algorithm for binary classification, as described in class, from
scratch, in Python. All of the files mentioned here are available in the tarball A2.tgz available on
Canvas.

Implementation details:

• First, read in training data from a single file (we suggest that your program take the filename
as a command-line argument) and store it in memory. You can assume for this assignment that
you’ll never have more than 1000 training examples.
• At the end of each epoch, report the number of mistakes made on that epoch to standard out.
• Test data will always be in a separate file, optionally provided on the command-line. At the end

of training, report the number of mistakes on the test data (if there is a test dataset).
• The format for training and testing data will always be one-instance-per-line, formatted as:

y tab x[1] tab x[2] tab . . . tab x[d] newline

where tab is a single tab character and newline is a single newline character.
• If there’s other diagnostic output you’d like to generate, send it to standard error. This will make

it easier in case we need to run your code.

As a sanity check, train the perceptron on the dataset in A2.1.tsv, which has 50 positive and
50 negative examples and is separable by the hyperplane corresponding to weights:

w∗ = [−1.2 2.7 − 7.6 − 2.8 − 2.8]>
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question number
dataset 2 3 4 5

2
3
4
5
6
7
8
9

Table 1: Write your answers on part 2 into a table like this one.

You should be able to converge to a weight vector that achieves zero training-set error in about 20
epochs; your weight vector might not be identical to w∗, of course.

The tarball for this assignment contains eight additional training datasets (A2.2.train.tsv,
A2.3.train.tsv, . . . , A2.9.train.tsv). Each one has a corresponding test dataset (files
A2.*.test.tsv). For each dataset [8 points per dataset]:

1. Generate a plot in which the x-axis is the epoch, and the y-axis shows the training error rate in
blue and the test error rate in red, at the end of that epoch, where you train on all of the training
data. We suggest that you train for 1000 or more epochs. You might want to also include a plot
that doesn’t show all epochs (only earlier ones) so that the “interesting” trends are visible. You
might also want to generate a more fine-grained plot that reports training and test error rates after
every iteration of the inner loop (i.e., after each prediction the perceptron makes on a training
instance); don’t include such a plot in your writeup unless it shows something interesting we
couldn’t see in the first plots.

2. Do you believe that the training dataset is linearly separable? If so, give a lower bound on the
margin.

3. Do you believe that your learning algorithm overfit the training data? If so, how do you know?
4. Do you suspect that any features are noise? Which ones, and why? (Please index features from

1 to 20 in the order they appear in the data files.)
5. Carve out a development dataset from the training data and use it to tune the perceptron’s hyper-

parameter(s). Report training, development, and test data accuracy, as well as the hyperparame-
ter(s) you tuned and the value you selected for the hyperparameter(s).

Present your answers to the non-plotting questions in a table formatted like Table 1.

Surprise! [6 points] You may not have noticed that test sets 6–8 are identical (but they are). The
three corresponding training datasets increase in size from 6 to 7 and 7 to 8, but: (i) they don’t
overlap and (ii) they do come from the same source. What do you notice when you compare your
findings for these three datasets? Can you use this information to get better performance on test
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set 6 (equivalently, test set 7, equivalently test set 8), still using your perceptron implementation?
If so, go for it and give answers to the same questions as above (1–5).

3 Beat the Perceptron [10 points]
Choose one of the datasets (2–9) where the perceptron’s test-set performance was not strong, and
try to improve using any of the following:

• Decision stump
• K-nearest neighbors
• Voted perceptron

If there are hyperparameters, you should tune them on your development data, not the test data.
Tell us which dataset (2–9) you focused on and why. Fully (and concisely) explain the explo-

ration and choices you made as you tuned hyperparameters. Report on how well you were able to
perform on the test set, making a fair comparison to the perceptron. It’s fine to test more than one
of the methods listed above, but you must implement everything yourself and you must report on
all of the algorithms you tried (no tuning on test data, even to select the algorithm!). You are only
required to test one of them.

4 Bonus [up to 10 extra points]
For the dataset you considered in part 3, reduce its dimensionality using PCA and use the resulting
features instead of the original ones, with both the perceptron and the other algorithm(s) you im-
plemented. For this problem only, you may use an existing implementation of PCA. For any hope
of the maximal number of extra points, you must give a convincing argument that PCA offered
some benefit (and explain the benefit), or that it could not help. Be sure to explain how you chose
K. Plots that help make your argument more clear are encouraged.

Hints. Remember that PCA is an unsupervised learning algorithm; if you use the ys, you are
doing it wrong and will get zero extra points. Also remember to center your data.
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