
Assignment 1
CSE 446: Machine Learning

University of Washington

Due: October 12, 2017

You will submit the following files or documents for this homework, compressed into a gzipped
tarball named A1.tgz.

• Your report as a pdf file named A1.pdf containing answers to written questions. You must in-
clude the plots and explanation for programming questions (if required) in this document only.
We strongly recommend typesetting your scientific writing using LATEX. Some free tools that
might help: ShareLaTeX (www.sharelatex.com), TexStudio (Windows), MacTex (Mac),
TexMaker (cross-platform), and Detexify2 (online). If you want to type, but don’t know (and
don’t want to learn) LATEX, consider using a markdown editor with real-time preview and equa-
tion editing (e.g., stackedit.io, marxi.co). Writing solutions by hand is fine, as long as
they are neat; you will need to scan them into a single pdf.
Part of the training we aim to give you in this advanced class includes practice with technical
writing. Organize your report as neatly as possible, and articulate your thoughts as clearly as
possible. We prefer quality over quantity. Do not flood the report with tangential information
such as low-level documentation of your code that belongs in code comments or the README.
Similarly, when discussing the experimental results, do not copy and paste the entire system
output directly to the report. Instead, create tables and figures to organize the experimental
results.
• Python source code for the programming assignment. Please note that we will not accept

Jupyter notebooks. You will submit your code together with a neatly written README file to
instruct how to run your code with different settings (if applicable). We assume that you always
follow good practice of coding (commenting, structuring), and these factors are not central to
your grade.

You are welcome to use any Python libraries for data munging, visualization, and numerical
linear algebra. Examples includes Numpy, Pandas, and Matplotlib. You may not, however, use
Python machine learning libraries such as Scikit-Learn or TensorFlow. If in doubt, email the
instructors.

1

www.sharelatex.com
stackedit.io
marxi.co

1 Criteria for Choosing a Feature to Split [20 points]
When choosing a single feature to use to classify—for example, if we are greedily choosing the
next feature to use for a subset of the data inside of a decision tree—we proposed in lecture to
choose the feature that will give the greatest reduction in error.

Let D be the dataset under consideration, n be the number of examples in D with label 0
(negative examples), and p be the number of examples in D with label 1 (positive examples).

1.1 Not Splitting [5 points]
Suppose we have reached the maximum depth allowed by our learning algorithm; we may not
use any more features. At this point, we have a partition of the data, D′ (which is a subset of D)
and it contains n′ negative examples and p′ positive examples. Assuming that our algorithm is
deterministic, what’s the smallest number of mistakes (in D′) we can make, and how do we obtain
it? (Give a formula in terms of the symbols we have introduced above.)

1.2 Splitting [5 points]
Consider a binary feature φ with the following contingency table for D′:

y
φ

0 1
0 n0 n1

1 p0 p1

Note that p′ = p0 + p1 and n′ = n0 + n1. If we split D′ based on feature φ, how many mistakes
will we make (in D′)? (Give a formula in terms of the symbols we have introduced.)

Another way to think about the which-feature-if-any-to-split-on decision is to maximize the
number of mistakes that we would correct by splitting (as opposed to not splitting). This is given
by subtracting the answer to 1.2 from the answer to 1.1. If we divide this value by |D′| (the number
of examples in D′), then we have the absolute reduction in error rate achieved by making the split
(as opposed to not splitting). From here on, call this value “error rate reduction.”

Before proceeding, think carefully about this question: is it possible for a split to increase the
error rate on the training set? (No points for this, but you should have a confident answer in your
mind.)

1.3 Mutual Information [10 points]
A rather different way to think about the decision is to use information theory. Simply put, we
want to choose a feature φ that gives us as much information as possible about the label, within D.
Information theory gives us a way to think about measuring information.

2 of 7

Mutual information1 is an association score between two random variables A and B. For sim-
plicity’s sake, we assume both of them are binary and take values in {0, 1}. The mutual information
between A and B is given by:

I(A;B) =
∑

a∈{0,1}

∑
b∈{0,1}

P (A = a,B = b) log
P (A = a,B = b)

P (A = a) · P (B = b)
(1)

If we use base-2 logarithms, then this quantity is measured in bits. It is the average number of bits
that observing random variable A tells you about random variable B, and vice versa, across many
trials. IfA andB are perfectly predictive of each other (either always the same or always different),
then I(A;B) = 1 bit. If they carry no information about each other, then I(A;B) approaches 0.

The formula for the mutual information between the binary value of feature φ and the binary
label y, under the distribution observed in D, is as follows; we use |D| to denote the size of D;
note that |D| = p+ n = p0 + n0 + p1 + n1. This is obtained by thinking about the feature and the
label as two random variables and plugging in relative frequency estimates of the probabilities.

I(φ;Y) =
n0

|D|
log

|D|n0

(n0 + p0)n
+

p0
|D|

log
|D|p0

(n0 + p0)p
+

n1

|D|
log

|D|n1

(n1 + p1)n
+

p1
|D|

log
|D|p1

(n1 + p1)p
(2)

We’ve done a bit of simplification on the formula above, but it’s still pretty daunting. There are
two ways to go about gaining some intuition here. The first is to learn about information theory;
we hope you’ll consider doing that.2

The second way is to explore how these functions (error rate reduction and mutual information)
change for features with different relationships to the labels. Suppose that |D| = 1000. Let’s start
by fixing n = p = 500; our dataset is perfectly balanced. Imagine that the dataset-creators have
been quite generous to us and provided us with 499 features. For i from 1 to 499, let the ith feature
φi have values n0 = p1 = i and n1 = p0 = 500− i. (Remember: this is a contrived example. Real
world data will never be so perfectly constructed!)

Generate a plot where the x-axis is i (the index of one of the 499 features) and the y-axis is error
rate reduction for that feature. On the same plot, in a different color, show the mutual information
between the feature and the label. What do you notice, and what conclusions can you draw?

2 Decision Stumps and Trees [40 points]
It might be helpful for you to draw the decision boundary, in the figure, of each classifier in each
part.

1Strictly speaking, this quantity is known as average mutual information. When used for building decision trees, it
is often called “information gain.”

2Cover and Thomas [1] is an excellent introductory textbook, an older edition of which your instructor owns a copy
that is perpetually borrowed by a Ph.D. student—a good sign that it’s useful. If you find an amazing tutorial online,
please recommend it to the class!

3 of 7

Consider the problem of predicting whether a person has a college degree based on age and
salary. The table and graph below contain training data for 10 individuals.

Age Salary ($) College Degree
24 40,000 Yes
53 52,000 No
23 25,000 No
25 77,000 Yes
32 48,000 Yes
52 110,000 Yes
22 38,000 Yes
43 44,000 No
52 27,000 No
48 65,000 Yes

20 25 30 35 40 45 50 55
0.2

0.4

0.6

0.8

1

·105

Age

Sa
la

ry

2.1 Build Two Decision Stumps [10 points]
In class, we focused on discrete features. One way to deal with continuous (or ordinal) data is
to define binary features based on thresholding of continuous features like Age and Salary. For
example, you might let:

φ(x) =

{
0 if Age ≤ 50
1 otherwise (3)

The choice of the threshold 50 is, on the surface, arbitrary. In practice, though, for a given fea-
ture, you should only consider the best threshold for that feature. While the search for a threshold
might seem daunting, the only thresholds worth considering will be midpoints between consecutive

4 of 7

feature values, after sorting.3

For each of the two features in this dataset (Age and Salary), generate a plot showing the
training set accuracy (on the y-axis) as a function of the threshold value (on the x-axis). You will
probably want to automate the calculations. Do the same for mutual information as a criterion.
Report the training-set error rates of all four decision stumps. Did the criterion for selecting a
threshold make a difference?

2.2 Build Decision Trees [14 points]
Build a decision tree for classifying whether a person has a college degree by greedily choosing
threshold splits. Do this two ways: by counting errors (as shown in lecture) and using mutual
information (as derived above). Show both decision trees and report their training set error rates.

2.3 Multivariate Decision Tree [12 points]
Multivariate decision trees are a generalization of the “univariate” decision trees we’ve discussed
so far. In a multivariate decision tree, more than one attribute can be used in the decision rule for
each split. That is, from a geometric point of view, splits need not be orthogonal to a feature’s axis.

For the same data, learn a multivariate decision tree where each split makes decisions based
on the sign of the function αxAge + βxIncome − 1. Draw your tree, including the α, β, and the
information gain for each split.

2.4 Discussion [4 points]
Multivariate decision trees have practical advantages and disadvantages. List an advantage and a
disadvantage multivariate decision trees have compared to univariate decision trees.

3 Implementation: K-Means [40 points]
In class we discussed the K-means clustering algorithm. You will implement the K-means algo-
rithm on digit data. A template has been prepared for you: it is named kmeans template.py
and is available on Canvas in the A1.tgz download. Your job is to fill in the functions as described
below.

3.1 Data
The data are held in two files: one for the inputs and one for the output. The file digit.txt
contains the inputs: namely, 1000 observations of 157 pixels (a randomly chosen subset of the
original 784) from images containing handwritten digits. The file labels.txt contains the true

3Imagine moving a threshold just a little bit, but not enough to change the decision for any data point. For example,
the threshold in Equation 3 could be reduced to 49 or increased to 51, and there would be no effect on the classification
decisions in our dataset.

5 of 7

digit label (one, three, five, or seven, each coded as a digit). The Python template handles reading
in the data; just make sure that all the files live in the same directory as your code.

The labels correspond to the digit file, so the first line of labels.txt is the label for the digit
in the first line of digit.txt.

3.2 Algorithm [15 points]
Your algorithm will be implemented as follows:

1. Initialize k starting centers by randomly choosing k points from your data set. You should
implement this in the initialize function. [5 points]

2. Assign each data point to the cluster associated with the nearest of the k center points. Imple-
ment this by filling in the assign function. [5 points]

3. Re-calculate the centers as the mean vector of each cluster from (2). Implement this by filling
in the update function. [5 points]

4. Repeat steps (2) and (3) until convergence. This wrapping is already done for you in the loop
function, which lives inside the cluster function.

3.3 Within-Group Sum of Squares [5 points]
One way to formalize the goal of clustering is to minimize the variation within groups, while
maximizing the variation between groups. Under this view, a good model has a low “sum of
squares” within each group.

We define sum of squares as follows. Let µk (a vector) be the mean of the observations (each
one a vector) in kth cluster. Then the within group sum of squares for kth cluster is defined as:

SS (k) =
∑
i∈k

‖xi − µk‖22

where “i ∈ k” ranges over the set of indices i of observations assigned to the kth cluster. Note
that the term ‖xi − µk‖2 is the Euclidean distance between xi and µk, and therefore should be

calculated as ‖xi − µk‖2 =
√∑d

j=1 (xi[j]− µk[j])
2, where d is the number of dimensions. Note

that that term is squared in SS (k), cancelling the square root in the formula for Euclidean distance.
If there are K clusters total then the “sum of within-group sum of squares” is the sum of all K

of these individual SS(k) terms.
In the code, the within-group sum of squares is referred to (for brevity) as the distortion. Your

job is to fill in the function compute distortion.

3.4 Mistake Rate [5 points]
Typically K-means clustering is used as an exploration tool on data where true labels are not
available, and might not even make sense. (For example, imagine clustering images of all of the
foods you have eaten this year.)

6 of 7

Given that, here, we know the actual assignment labels for each data point, we can analyze
how well the clustering recovered the true labels. For kth cluster, let the observations assigned to
that cluster vote on a label (using their true labels as their votes). Then let its assignment be the
label with the most votes. If there is a tie, choose the digit that is smaller numerically. This is
equivalent to deciding that each cluster’s members will all take the same label, and choosing the
label for that cluster that lead to the fewest mistakes.

For example, if for cluster two we had 270 observations labeled one, 50 labeled three, 9 labeled
five, and 0 labeled seven then that cluster will be assigned value one and had 50 + 9 + 0 = 59
mistakes.

If we add up the total number of mistakes for each cluster and divide by the total number of
observations (1000) we will get our total mistake rate, between 0 and 1. Lower is better.

Your job is to fill in the function label clusters, which implements the label assignment.
Once you have implemented this, the function compute mistake rate (already written) will
compute the mistake rate for you.

3.5 Putting it All Together [15 points]
Once you have filled in all the functions, you can run the Python script from the command line with
python kmeans template.py. The script will loop over the values K ∈ {1, 2, . . . , 10}. For
each value of k, it will randomly initialize 5 times using your initialization scheme, and keep the
results from the run that gave the lowest within-group sum of squares. For the best run for each K,
it will compute the mistake rate using your cluster labeling function.

The code will output a figure named kmeans.png. The figure will have two plots. The top
one shows within-group sum of squares as a function of K. The bottom one shows the mistake
rate, also as a function of K.

Write down your thoughts on these results. Are they what you expected? Did you think that
within-group sum of squares and mistake rate would go up or decrease as K increased? Did the
plots confirm your expectations?

References
[1] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons,

2012.

7 of 7

	Criteria for Choosing a Feature to Split [20 points]
	Not Splitting [5 points]
	Splitting [5 points]
	Mutual Information [10 points]

	Decision Stumps and Trees [40 points]
	Build Two Decision Stumps [10 points]
	Build Decision Trees [14 points]
	Multivariate Decision Tree [12 points]
	Discussion [4 points]

	Implementation: K-Means [40 points]
	Data
	Algorithm [15 points]
	Within-Group Sum of Squares [5 points]
	Mistake Rate [5 points]
	Putting it All Together [15 points]

