CSE446: SVMs Winter 2016

Ali Farhadi

Slides adapted from Carlos Guestrin, and Luke Zettelmoyer

Linear classifiers – Which line is better?

Pick the one with the largest margin!

How many possible solutions?

$$\max_{\gamma, w, w_0} \gamma$$

$$\forall j. y^j (w \cdot x^j + w_0) > \gamma$$

Any other ways of writing the same dividing line?

- $\mathbf{w.x} + \mathbf{b} = 0$
- 2w.x + 2b = 0
- 1000**w.x** + 1000b = 0
-
- Any constant scaling has the same intersection with z=0 plane, so same dividing line!

Do we really want to max $_{v,w,w0}$?

Review: Normal to a plane

$$x^{j} = \bar{x}^{j} + \lambda \frac{w}{\|w\|_{2}} \left\| w \right\|_{2} = \sqrt{2}$$

$$||w||_2 = \sqrt{\sum_i w_i^2}$$

Assume: x⁺ on positive line (y=1 intercept), x⁻ on negative (y=-1)

$$x^{+} = x^{-} + 2\gamma \frac{w}{\|w\|^{2}}$$

$$w \cdot x^{+} + w_{0} = 1$$

$$w \cdot (x^{-} + 2\gamma \frac{w}{\|w\|_{2}}) + w_{0} = 1$$

$$w \cdot x^{-} + w_{0} + 2\gamma \frac{w \cdot w}{\|w\|_{2}} = 1$$

$$\gamma \frac{w \cdot w}{\|w\|_{2}} = 1 \quad w \cdot w = \sum_{i} w_{i}^{2} = \|w\|_{2}^{2}$$

$$\gamma = \frac{\|w\|_{2}}{\|w\|_{2}} = \frac{1}{\|w\|_{2}}$$
Final result: can maximize constrained

Final result: can maximize constrained margin by minimizing ||w||₂!!!

Max margin using canonical hyperplanes

Support vector machines (SVMs)

$$\min_{w,w_0} \frac{1}{2} ||w||_2^2
\forall j. y^j (w \cdot x^j + w_0) \ge 1$$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close
- Decision boundary defined by support vectors

Non-support Vectors:

- everything else
- moving them will not change w

Support Vectors:

 data points on the canonical lines

What if the data is not linearly separable?

Add More Features!!!

$$\phi(x) = \begin{pmatrix} x_1 \\ \dots \\ x_n \\ x_1 x_2 \\ x_1 x_3 \\ \dots \\ e^{x_1} \\ \dots \end{pmatrix}$$

Can use Kernels... (more on this later) What about overfitting?

What if the data is still not linearly separable?

$$\min_{w,w_0} \frac{1}{2} \|w\|_2^2 + \text{C \#(mistakes)}$$

$$\forall j.y^j (w \cdot x^j + w_0) \geq 1$$

- First Idea: Jointly minimize $\|w\|_2^2$ and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C on development / cross validation
- Tradeoff #(mistakes) and $||w||_2^2$
 - 0/1 loss
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!

Slack variables – Hinge loss

$$\min_{w,w_0} \frac{1}{2} \|w\|_2^2 + C \sum_{\mathbf{j}} \xi^{\mathbf{j}} \\ \forall j. y^j (w \cdot x^j + w_0) \ge 1 - \xi^{\mathbf{j}} , \xi^{\mathbf{j}} \ge 0$$

Slack Penalty C > 0:

- $C=\infty \rightarrow$ have to separate the data!
- $C=0 \rightarrow$ ignore data entirely!
- Select on dev. set, etc.

For each data point:

- If margin ≥ 1, don't care
- If margin < 1, pay linear penalty

Slack variables – Hinge loss

Solving SVMs:

- Differentiate and set equal to zero!
- No closed form solution, but quadratic program (top) is concave
- Hinge loss is not differentiable, gradient ascent a little trickier...

Logistic Regression as Minimizing Loss

Logistic regression assumes:

$$f(x) = w_0 + \sum_i w_i x_i$$

$$P(Y = 1|X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))}$$

And tries to maximize data likelihood, for Y={-1,+1}:

$$P(y^i|x^i) = \frac{1}{1 + \exp(-y^i f(x^i))} \quad \ln P(\mathcal{D}_Y \mid \mathcal{D}_X, \mathbf{w}) = \sum_{j=1}^N \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

$$= -\sum_{i=1}^N \ln(1 + \exp(-y^i f(x^i)))$$
Equivalent to minimizing *log loss*:

$$\sum_{i=1}^{N} \ln(1 + \exp(-y^{i} f(x^{i})))$$

SVMs vs Regularized Logistic Regression

$$f(x) = w_0 + \sum_i w_i x_i$$

SVM Objective:

$$\arg\min_{\mathbf{w},w_0} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{j=1}^N [1 - y^j f(x^j)]_+$$
[x]₊= max(x,0)

Logistic regression objective:

$$\arg\min_{\mathbf{w}, w_o} \lambda \|\mathbf{w}\|_2^2 + \sum_{j=1}^N \ln(1 + \exp(-y^j f(x^j)))$$

Tradeoff: same l₂ regularization term, but different error term

Graphing Loss vs Margin

We want to smoothly approximate 0/1 loss!

What about multiple classes?

One against All

Learn 3 classifiers:

- + vs {0,-}, weights w₊
- vs {0,+}, weights w_
- 0 vs {+,-}, weights w₀
 Output for x:

```
Any problems?

Could we learn this →

dataset?
```

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
- Need new constraints!

For each class:

$$w^{y^j} \cdot x^j + w_0^{y^j} \ge w^{y'} \cdot x^j + w_0^{y'} + 1, \quad \forall y' \ne y^j, \quad \forall j$$

Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

$$\min_{w,w_0} \sum_{y} \|w^y\|_2^2 + C \sum_{j} \xi^j$$

$$w^{y^j} \cdot x^j + w_0^{y^j} \ge w^{y'} \cdot x^j + w_0^{y'} + 1 - \xi^j, \quad \forall y' \neq y^j, \quad \xi^j > 0 \quad \forall j$$

Now, can we learn it?

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs