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Linear classifiers — Which line is better?




Pick the one with the largest margin!
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How many possible solutions?

max -y
Y,W,Wo

Vi (w27 +wg) >

Any other ways of writing the
same dividing line?

e WwX+b=0

e 2w.Xx+2b=0

e 1000w.x + 1000b =0

* Any constant scaling has the same
intersection with z=0 plane, so
same dividing line!

Do we really want to max ?

v,w,w0 *




Review: Normal to a plane

= Key Terms

T’ -- projection of xi onto w

-- unit vector normal to w

= wlla = [ w?




wllz = sz Assume: x* on positive line (y=1
i intercept), x on negative (y=-1)
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Final result: can maximize constrained
margin by minimizing ||wl||,!!!




Max margin using canonical hyperplanes
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The assumption of canonical
hyperplanes (at +1 and -1) changes
the objective and the constraints!



Support vector machines (SVMs)
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min - |[w][3
w,wo
.t Viy (w-z? +wy) > 1
& - * Solve efficiently by quadratic
o+ programming (QP)
— Well-studied solution algorithms
N + — Not simple gradient ascent, but close
e Decision boundary defined by
support vectors
argin 2Y
Non-support Vectors:
. everything else Support Vectors:
« moving them will « data points on the




What if the data is not linearly separable?

_ Add More Features!!!
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Can use Kernels... (more on this later)
What about overfitting?



What if the data is still not linearly separable?

min — HwH% + C #(mistakes)

w,wo
" _ Viy (w-x? +wy) > 1
= . . . .. 2
+ - * First Idea: Jointly minimize ||w||5
s T o= 4L =7 and number of training mistakes
= - = — How to tradeoff two criteria?
+ + F _ — Pick Con development / cross validation
+ - = :
* Tradeoff #(mistakes) and ||w||5
ok
— 0/1 loss

— Not QP anymore

— Also doesn’t distinguish near misses and
really bad mistakes

— NP hard to find optimal solution!!!
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min g flwlly +Cx g

Vi (w- o’ +we) > 1-8 &0

Slack Penalty C > 0:
e (C=ow =2 have to separate the data!

(=0 - ignore data entirely!
* Select on dev. set, etc.

For each data point:

e [fmargin>1, don’t care

* If margin < 1, pay linear penalty
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Reqgularization :
Solving SVMs: J Hinge Loss

» Differentiate and set equal to zero!
* No closed form solution, but quadratic program (top) is concave
* Hinge loss is not differentiable, gradient ascent a little trickier...



Logistic Regression as Minimizing Loss

Logistic regression assumes: f(x) = Wo T+ Z Wiy
exp(f(z)) ’

~ 1+ exp(f(2))

And tries to maximize data likelihood, for Y={-1,+1}:

N
1 In P(Dy | Dx,w) = > InP(y | x!,w)
j=1

PY =1|X = z)

P(y'|z") = 1+ exp(—y" f(2))

N
. o = — > In(L+exp(—y'f(z)))
Equivalent to minimizing log loss: i—1

Zln(l +exp(—y' f(z")))



SVMs vs Regularized Logistic Regression

f(z) = wo + Z”wz‘l’i

SVM Objective:

N
1 : .
arg min §HWH§ +C» [1—y f(2))]4
=1 [X],= max(x,0)

Logistic regression objective:

N
arg min \||w||3 + Z In(1 + exp(—y? f(27)))
W7w0 j:l
Tradeoff: same |, regularization term, but different error
term



Graphing Loss vs Margin

Logistic regression: ,
In(1 + exp(—y’ f(27)))

Hinge loss:

11—y f(a?)]+

We want to smoothly approximate 0/1 loss!



What about multiple classes?




One against All

Learn 3 classifiers:

« +vs{0,-}, weights w,
« -vs{0,+}, weights w_
Wo e (O vs {+,-}, weights w,
- Output for x:

- y = argmax; w;*x

Any problems?
Could we learn this -
dataset?
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Learn 1 classifier: Multiclass SVM

Simultaneously learn 3

sets of weights:

e How do we
guarantee the
correct labels?

« Need new
constraints!

For each Class:
wY - +w(y)j > wY . g +wy +1, Yy £y, V5



Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss

Tackling multiple class

— One against All
— Multiclass SVMs



