CSE446: Perceptron Winter 2016

Ali Farhadi

Who needs probabilities?

- Previously: model data with distributions
- Joint: P(X,Y)
 - e.g. Naïve Bayes
- Conditional: P(Y|X)
 - e.g. Logistic Regression
- But wait, why probabilities?
- Lets try to be errordriven!

mna	cylinders	dicalacamon	horeonowor	weight	accoloration	modolyoor	mak
mpg	Cyllilaeis	displacemen	noisepower	weignt	acceleration	moderyear	make
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	amer
bad	4	121	110	2600	12.8	77	europ
bad	8	350	175	4100	13	73	amer
bad	6	198	95	3102	16.5	74	amer
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	amer
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	amer
bad	8	455	225	4425	10	70	amer
good	4	107	86	2464	15.5	76	euror
bad	5	131	103	2830	15.9	78	euror

Generative vs. Discriminative

Generative classifiers:

- E.g. naïve Bayes
- A joint probability model with evidence variables
- Query model for causes given evidence

Discriminative classifiers:

- No generative model, no Bayes rule, often no probabilities at all!
- Try to predict the label Y directly from X
- Robust, accurate with varied features
- Loosely: mistake driven rather than model driven

Discriminative vs. generative

Generative model

(The artist)

Discriminative model

(The lousy painter)

Classification function

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i x_i = w \cdot x$$

- If the activation is:
 - Positive, output class 1
 - Negative, output class 2

Example: Spam

- Imagine 3 features (spam is "positive" class):
 - free (number of occurrences of "free")
 - money (occurrences of "money")
 - BIAS (intercept, always has value 1)

 \boldsymbol{x}

"free money"

```
BIAS : 1
free : 1
money : 1
```

```
BIAS : -3 free : 4 money : 2
```

 \boldsymbol{w}

$$(1)(-3) + (1)(4) + (1)(2) + \dots = 3$$

 $w \cdot x > 0 \rightarrow SPAM!!!$

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to y=+1
 - Other corresponds to y=-1

 \overline{w}

BIAS : -3 free : 4 money : 2

Binary Perceptron Algorithm

- Start with zero weights: w=0
- For t=1..T (T passes over data)
 - For i=1..n: (each training example)
 - Classify with current weights

$$y = sign(w \cdot x^i)$$

- sign(x) is +1 if x>0, else -1
- If correct (i.e., y=yⁱ), no change!
- If wrong: update

$$w = w + y^i x^i$$

Examples: Perceptron

Examples: Perceptron

• For t=1..T, i=1..n:

$$-y = sign(w \cdot x^i)$$

$$- \text{ if } \mathbf{y} \neq \mathbf{y}^{\mathbf{i}}$$

$$w = w + y^{i} x^{i}$$

X ₁	X ₂	У
3	2	1
-2	2	-1
-2	-3	1

Initial:

- w = [0,0]
- t=1,i=1
- [0,0]•[3,2] = 0, sign(0)=-1
- w = [0,0] + [3,2] = [3,2]t=1,i=2
- [3,2]•[-2,2]=-2, sign(-2)=-1 t=1,i=3
- [3,2]•[-2,-3]=-12, sign(-12)=-1
- w = [3,2] + [-2,-3] = [1,-1] t=2,i=1
- [1,-1]•[3,2]=1, sign(1)=1 t=2,i=2
- [1,-1]•[-2,2]=-4, sign(-4)=-1 t=2,i=3
- [1,-1]•[-2,-3]=1, sign(1)=1

Converged!!!

- $y=w_1x_1+w_2x_2 \rightarrow y=x_1+-x_2$
- So, at y=0 \rightarrow $x_2=x_1$

Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class: w_{y}
 - Calculate an activation for each class

$$activation_w(x,y) = w_y \cdot x$$

Highest activation wins

$$y^* = \arg\max_{y}(\operatorname{activation}_{w}(x, y))$$

Example: y is {1,2,3}

- We are fitting three planes: w₁, w₂, w₃
- Predict i when w_i x is highest

$$w_1 \cdot x$$
 $w_2 \cdot x$
 $w_3 \cdot x$

Example

 ${\mathcal X}$

"win the vote"

BIAS : 1
win : 1
game : 0
vote : 1
the : 1

w_{SPORTS}

$w_{POLITICS}$

w_{TECH}

BIAS	:	-2	
win	:	4	
game	:	4	
vote	:	0	
the	:	0	

$$x \cdot w_{SPORTS} = 2$$

$$x \cdot w_{POLITICS} = 7$$

$$x \cdot w_{TECH} = \mathbf{2}$$

POLITICS wins!!!

The Multi-class Perceptron Alg.

- Start with zero weights
- For t=1..T, i=1..n (T times over data)
 - Classify with current weights

$$y = \arg\max_{y} w_{y} \cdot x^{i}$$

- If correct (y=y_i), no change!
- If wrong: subtract features x^i from weights for predicted class w_y and add them to weights for correct class w_{y_i}

$$w_y = w_y - x^i$$

$$w_{y^i} = w_{y^i} + x^i$$

Linearly Separable (binary case)

• The data is linearly separable with margin γ , if:

$$\exists w. \forall t. y^t (w \cdot x^t) \ge \gamma > 0$$

- $\begin{array}{c} \bullet \quad \text{For } \mathbf{y}^{\text{t}} = \mathbf{1} \\ w \cdot x^t \geq \gamma \end{array}$
- $\begin{array}{c} \bullet \quad \text{For } \mathbf{y}^{\text{t}} = \mathbf{1} \\ w \cdot x^t \leq -\gamma \end{array}$

Mistake Bound for Perceptron

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

• Assume data is separable with margin γ :

$$\exists w^* \text{ s.t. } ||w^*||_2 = 1 \text{ and } \forall t.y^t(w^* \cdot x^t) \ge \gamma$$

Also assume there is a number R such that:

$$\forall t. ||x^t||_2 \leq R$$

• Theorem: The number of mistakes (parameter updates) made by the perceptron is bounded:

$$mistakes \le \frac{R^2}{\gamma^2}$$

Perceptron Convergence (by Induction)

 Let w^k be the weights after the k-th update (mistake), we will show that:

$$|k^2\gamma^2| \le ||w^k||_2^2 \le kR^2$$

• Therefore:

$$k \le \frac{R^2}{\gamma^2}$$

- Because R and γ are fixed constants that do not change as you learn, there are a finite number of updates!
- Proof does each bound separately (next two slides)

Lower bound

Perceptron update:

$$w = w + y^t x^t$$

Remember our margin assumption:

$$\exists w^* \text{ s.t. } ||w^*||_2 = 1 \text{ and } \forall t.y^t(w^* \cdot x^t) \geq \gamma$$

 Now, by the definition of the perceptron update, for k-th mistake on t-th training example:

$$w^{k+1} \cdot w^* = (w^k + y^t x^t) \cdot w^*$$

$$= w^k \cdot w^* + y^t (w^* \cdot x^t)$$

$$\geq w^k \cdot w^* + \gamma$$

So, by induction with w⁰=0, for all k:

$$k\gamma \le w^k \cdot w^*$$

$$\le \|w^k\|_2^2$$

$$k^2\gamma^2 \le \|w^k\|_2^2$$

Because:

$$\begin{split} w^k \cdot w^* &\leq \|w^k\|_2 \times \|w^*\|_2 \\ &\quad \text{and } \|w^*\|_2 = 1 \end{split}$$

Upper Bound

Perceptron update:

$$w = w + y^t x^t$$

Data Assumption:

$$\forall t. \|x^t\|_2 \leq R$$

 By the definition of the Perceptron update, for k-th mistake on t-th training example:

$$\begin{split} \|w^{k+1}\|_2^2 &= \|w^k + y^t x^t\|_2^2 & \stackrel{\leq R^2 \text{ because}}{(y^t)^2 = 1 \text{ and } \|x^t\|_2 \leq R} \\ &= \|w^k\|_2^2 + (y^t)^2 \|x^t\|_2^2 + 2y^t x^t \cdot w^k \\ &\leq \|w^k\|_2^2 + R^2 \end{split}$$

• So, by induction with $w_0=0$ have, for all k:

$$||w_k||_2^2 \le kR^2$$

O because Perceptron made error (ythas different sign than xt•wt)

Perceptron Convergence (by Induction)

 Let w^k be the weights after the k-th update (mistake), we will show that:

$$|k^2\gamma^2| \le ||w^k||_2^2 \le kR^2$$

• Therefore:

$$k \le \frac{R^2}{\gamma^2}$$

- Because R and γ are fixed constants that do not change as you learn, there are a finite number of updates!
- If there is a linear separator, Perceptron will find it!!!

From Logistic Regression to the Perceptron:

Perceptron update when y is {-1,1}: $w = w + y^j x^j$

2 easy steps!

• Logistic Regression: (in vector notation): y is {0,1}

$$w = w + \eta \sum_{j} [y^{j} - P(y^{j}|x^{j}, w)]x^{j}$$

• Perceptron: when y is {0,1}:

$$w = w + [y^j - sign^0(w \cdot x^j)]x^j$$

• $sign^0(x) = +1$ if x>0 and 0 otherwise

Differences?

- Drop the Σ_j over training examples: online vs. batch learning
- Drop the dist'n: probabilistic vs. error driven learning

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$mistakes \le \frac{R^2}{\gamma^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Linear Separators

Which of these linear separators is optimal?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Support vector machines (SVMs) find the separator with max margin

SVM

$$\min_{w} \frac{1}{2} ||w||^2$$

$$\forall i, y \ w_{y^*} \cdot x^i \ge w_y \cdot x^i + 1$$

Three Views of Classification (more to come later in course!)

Training Data

Held-Out Data

> Test Data

Naïve Bayes:

- Parameters from data statistics
- Parameters: probabilistic interpretation
- Training: one pass through the data

Logistic Regression:

- Parameters from gradient ascent
- Parameters: linear, probabilistic model, and discriminative
- Training: gradient ascent (usually batch),
 regularize to stop overfitting

The perceptron:

- Parameters from reactions to mistakes
- Parameters: discriminative interpretation
- Training: go through the data until heldout accuracy maxes out