CSE446: Perceptron
Winter 2016

Ali Farhadi

Slides adapted from Dan Klein, Luke Zettlemoyer

Who needs probabilities?

Previously: model data

. . . . mpg |cylinders displacemen horsepower weight acceleration modelyear make
with distributions
good 4 97 75 2265 18.2 77 asia
. bad 6 199 90 2648 15 70 amer
JO| nt: P(X Y) bad 4 121 110 2600 12.8 77 eurog
’ bad 8 350 175/ 4100 13 73 amer
. bad 6 198 95 3102 16.5 74 amer
— e.g. Naive Bayes bad 4 108 94 2379 16.5 73 asia
bad 4 113 95 2228 14 71 asia
i . bad 8 302 139 3570 12.8 78 amer
Conditional: P(Y|X) : : . %70 T
— e.g. Logistic Regression - = : - - -
good 4 120 79 2625 18.6 82 amer
. bad 8 455 225 4425 10 70 amer
B u t Wa |t W h y good 4 107 86 2464 15.5 76 eurof
) bad 5 131 103 2830 15.9 78 eurof

probabilities?
Lets try to be error-
driven!

Generative vs. Discriminative

e Generative classifiers:
— E.g. nalve Bayes
— A joint probability model with evidence variables
— Query model for causes given evidence

 Discriminative classifiers:

— No generative model, no Bayes rule, often no
probabilities at all!

— Try to predict the label Y directly from X
— Robust, accurate with varied features
— Loosely: mistake driven rather than model driven

Discriminative vs. generative

p(Data, No Zebra)

» Generative model

o1t p(Data, Zebra)

(The artist)

* Discriminative model p(Zebra|Data)
(The lousy ! 7
painter) ol p(No Zebra|Data)

% 10 20 30 40 50 0 70

X = data
» Classification function T node-Tn
assification functio l1c_Lbel = Fyopra(Data)
-1
6 1‘0 éO 9:0 4‘0 5‘0 éO 7‘0 86

x = data

Linear Classifiers

Inputs are feature values
Each feature has a weight

Sum is the activation

activation,, (x) = E W;T; =W+ T
i

If the activation is:

— Positive, output class 1
— Negative, output class 2

Example: Spam

* Imagine 3 features (spam is “positive” class):
— free (number of occurrences of “free”)

— money (occurrences of “money”)
— BIAS (intercept, always has value 1)

X w

BIAS : 1 BIAS : =3 (1)(_3) _I_

3 N free 1 free 4 (1)(4) H

free money money : 1 money : 2 (1)(2) +
=3

wex >0 =» SPAM!!!

Binary Decision Rule

* |n the space of feature vectors
— Examples are points
— Any weight vector is a hyperplane

— One side corresponds to y=+1 > 2
C
— —_ o
Other corresponds to y=-1 = +1 = SPAM
W 1
BIAS : -3 0
free : 4 -1=HAM 0 1

money : 2

Binary Perceptron Algorithm

e Start with zero weights: w=0
 Fort=1..T (T passes over data)
— For i=1..n: (each training example)
* Classify with current weights
y = sign(w - x*)
— sign(x) is +1 if x>0, else -1
* If correct (i.e., y=y'), no change! w + (—1
* If wrong: update

w=w+y'x

w

Examples: Perceptron
* Separable Case

speed | 1

factor ' 1.0 .

1.000 -0.062
1.6 0.901
1.6 -0.094

-3.

http://isl.ira.uka.de/neuralNetCourse/2004/VL 11 5/Perceptron.html

Examples: Perceptron

* |Inseparable Case

speed » 1 |

factor V 1.0 -

1.000 -0.017
0.765
-0.146

http://isl.ira.uka.de/neuralNetCourse/2004/VL 11 5/Perceptron.html

Initial:
e Fort=1..T,i=1..n: * w=[0,0]

: i t=1,i=1
B y o S?gn(w o) * [0,0]°[3,2] =0, sign(0)=-1
— ifyzy o e w=[0,0]+][3,2] =[3,2]
w=w-+y'z t=1,i=2
e [3,2]°[-2,2]=-2, sign(-2)=-1
t=1,i=3
e [3,2]°[-2,-3]=-12, sign(-12)=-1
ma - ¥ e w=[32]+[-2-3] = [1-1]
3 2 1 t=2,i=1
x * [1,-1]°[3,2]=1, sign(1)=1
2 2 -1 1 t=2,i=2
X=X o [1,-1]°[-2,2]=-4, sign(-4)=-1
-2 -3 1 + t=2,i=3

e [1,-1]°[-2,-3]=1, sign(1)=1

Converged!!!
* V=W X HWLX, D YEX =X,
* So, at y=0 =2 X,=X,

Multiclass Decision Example:yis 12,3

« We are fitting three planes: w;,
W, Wj
R U Ie * Predict i when w; * x is highest

 |f we have more than two

classes: \
— Have a weight vector for Wz - &

each class: Wy \

— Calculate an activation for
each class

activation,, (z,y) = w, - x

— Highest activation wins

X

y* = arg max(activation,, (x,y))
Y

“win the vote”

Example

WSPORTS
BIAS : =2
win 4
game 4
vote 0
the 0

T WSPORTS = 2

P O

BIAS
win
;>. game
vote
the
WpOLITICS
BIAS 1
win 2
game 0
vote 4
the 0

T -WpOLITICS = 1

POLITICS wins!!!

WTECH

BIAS
win

vote

2
: 0
game : 2
0
the 0

T -WrgcH — 2

The Multi-class Perceptron Alg.

e Start with zero weights
 Fort=1..T, i=1..n (T times over data)
— Classify with current weights Wy
Yy = argmax w, - T
Y
— If correct (y=y,), no change!

* |[f wrong: subtract features " from
weights for predicted classw,and add
them to weights for correct class wy,

B o
Wy = Wy — &

Wi = Wy 4+ 2t

Linearly Separable (binary case)

* The datais linearly separable with margin v, if:

Jw.Vt.y'(w - x*) >~y > 0

» Fory'=1
w - xt > Y

« For y'=-1
w -zt < —7y

Mistake Bound for Perceptron /#lz= ‘/2@-:%2

Assume data is separable with margin v:

Jw* s.t. ||w*||e = 1 and Vt.y'(w* - 2*) > v

Also assume there is a number R such that:
vt.||zt|s < R

Theorem: The number of mistakes (parameter updates) made
by the perceptron is bounded:

R2
mistakes < —
~y

Perceptron Convergence (by Induction)

Let wk be the weights after the k-th update (mistake), we will
show that:

Ey? < w®||5 < kR?

Therefore: R2
k< —
Y
Because R and vy are fixed constants that do not change as you
learn, there are a finite number of updates!

Proof does each bound separately (next two slides)

Lower bOU nd Perceptron update:

w:w—l—yta:t

Remember our margin assumption:
Jw* s.t. ||w*||s =1 and Vt.y'(w* - z*) >~

Now, by the definition of the perceptron update, for k-th
mistake on t-th training example:

wh - w” = (W +ytal) - w?
— ’U}k . w* —I— yt(w* . let)
> w - w* +

* So, by induction with w°=0, for all k: Because:)
ky < w® - w* Wb < s x wls
— 1k and [|w”[|]2 =1
< [[w"]|2

2,2 k2
By < [lw™||5

Perceptron update: Data Assumption:
Upper Bound [w=w + y'x’] [vt.||zt]s < R]

* By the definition of the Perceptron update, for k-th mistake
on t-th training example:

< R? because
lw* 3 = [[w® + 2|3 (') = L and||o" |2 < R

= (w2 + ") [2"]3 + 2y"a" -

< k|3 + R S~

a4)
. . . < () because Perceptron made
* So, by induction with w,=0 have, for all k: error (! has different sign
than xtew?)

|wel3 < kR? - 7

Perceptron Convergence (by Induction)

Let wk be the weights after the k-th update (mistake), we will
show that:

Ey? < w®||5 < kR?

Therefore: R2
k< —
Y
Because R and vy are fixed constants that do not change as you
learn, there are a finite number of updates!

If there is a linear separator, Perceptron will find it!!!

From LOgiSﬁC RegrESSion Perceptron update wheny is {-1,1}:
to the Perceptron: w=w +y’ x’

2 easy steps!
e Logistic Regression: (in vector notation)' v is {0,1}

w—w+nz Py |2, w))z’

* Perceptron: when y is {0,1}:
w=w+ [y} — sign®(w - 2?)]x’
* signf(x) = +1 if x>0 and O otherwise
Differences?
* Drop the 2, over training examples: online vs.
batch learning

* Drop the dist'n: probabilistic vs. error driven
learning

Properties of Perceptrons

* Separability: some parameters get the Separable
training set perfectly correct

* Convergence: if the training is + 4

separable, perceptron will eventually +
converge (binary case) =

* Mistake Bound: the maximum number - .
of mistakes (binary case) related to the -
margin or degree of separability

Non-Separable
R2
mistakes < — + +
Y - + 4

+

Problems with the Perceptron

= Noise: if the data isn't
separable, weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

* »
" " " " .
* Mediocre generalization: finds a - - :
barely” separating solution - -
training
= Overtraining: test / held-out g
accuracy usually rises, then falls S
= QOvertraining is a kind of overfitting O hteelfjt—out

iterations

Linear Separators

= \Which of these linear separators is optimal?

Support Vector Machines

= Maximizing the margin: good according to intuition,
theory, practice

= Support vector machines (SVMSs) find the separator with
max margin

SVM

min =||w||?
w9

Vi, y wy*-xiZwy-xi—l—l

Three Views of °

Classification

(more to come later in
course!)

Held-Out
Data

Test
Data

Naive Bayes:
— Parameters from data statistics
— Parameters: probabilistic interpretation
— Training: one pass through the data

* Logistic Regression:

— Parameters from gradient ascent

— Parameters: linear, probabilistic model,
and discriminative

— Training: gradient ascent (usually batch),
regularize to stop overfitting

* The perceptron:
— Parameters from reactions to mistakes

— Parameters: discriminative
interpretation

— Training: go through the data until held-
out accuracy maxes out

