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Prediction of continuous variables

Billionaire says: Wait, that’s not what | meant!
You say: Chill out, dude.

He says: | want to predict a continuous
variable for continuous inputs: | want to
predict salaries from GPA.

You say: | can regress that...




Linear Regression

Prediction Prediction

y = wo + wi f1(x) g = wo + w1 f1(x) + wafo(x)




Ordinary Least Squares (OLS)
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The regression problem

* Instances: <x;, t>
e Learn: Mapping from x to t(x) H = {hla R hK}

* Hypothesis space: ~
— Given, basis functions {4,,...,h,} t(X) ~ f(X) — Z,L w;h; (X)
— hi(x) eR ~

. data
— Find coeffs w={w,...,w} |

— Why is this usually called linear regression?
* model is linear in the parameters
* Can we estimate functions that are not lines???



Linear Basis: 1D input
Need a bias term: {h,(x) = X, h,(x)=1}




« Parabola: {h,(x) = x?, h,(X)=X, hy(x)=1}

o 2D: {h,(x) = x42, hy(X)= X52, h5(X)=X,X,,...}
« Can define any basis functions h(x) for n-
dimensional input x=<x,,...,X.>



The regression problem

Instances: <x;, t,>

Learn: Mapping from x to t(x) H = {hlv R hK}

Hypothesis space: ~

— Given, basis functions {A,,...,h,} t(x) ~ f(x) = Zz wih;(x)
N~~~

— hZ(X> eR data

— Find coeffs w={w,...,w;} |

— Why is this usually called linear regression?
* model is linear in the parameters
* Can we estimate functions that are not lines???

Precisely, minimize the residual squared error:

W= argm“i’nz t(xj)—Zwihi(Xj)
j i



Regression: matrix notation

w* = arg m“il_nz (t(xj) — Zwihi(xj)>

w* = argmin(Hw —t)’ (Hw — t)

residual error
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Regression: 2
closed form V = afgmﬁ?(lt(xj);wihi(xj))

solution w* = argmin(Hw — t)? (Hw — t)

F(w)=(Hw —t)" (Hw — t)

VwF(w) =0
H'Hw —H't =0

w'=H"H)" H't




Regression solution: simple matrix math

w* = argmin (Hw —t)! (Hw — t)
w —/_/
residual error

solution: w* = (H™H) "H™t = A~ 'b

—_——
A-1 b
where A = H'H = b=H%t —
kxk matrix kx1 vector

for k basis functions



But, why?

Billionaire (again) says: Why sum squared

error???

You say: Gaussians, Dr. Gateson, Gaussians...

Model: prediction is linear function plus

Gaussian noise
—t(x) =Y. w, h(x) +¢

Learn w using MLE:

P(t|x,w,o) =




Maximizing log-likelihood

Maximize wrt w:

1 N N —[tj=>;wihi(x;)]
InP(D | w,o) =In 1] e 202
o\ 27T ‘— 9
J_
1\ -y = X wihi())?
argmu?xln (J 27’(') +Z g2

N
—[t. — , ihz' 12
— arg maxz [t — > wihi(x;)]

—argman[t —sz (z;)]°

Least-squares Linear Regression is MLE for Gaussians!!!




Regularization in Linear Regression

* One sign of overfitting: large parameter values!
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* Regularized or penalized regressions modified
learning object to penalize large parameters



Ridge Regression

* Introduce a new objective function:

N k ?
b = g3 (609 G+ 3t
1=1

j=1

— Prefer low error but also add a squared
penalize for large weights

— N is hyperparameter that balances tradeoft

— Explicitly writing out bias feature
(essentially hy=1), which is not penalized



Ridge Regression: matrix notation

N ’ k
Wridge = arg muijn Z t(z;) — (wo + Z wihi(z;)) |+ A Z wz2
i=1

g=1

= argmin (Hw —t)" (Hw —t) + A WT]0+kW

N

residual error

hi...hg t k+1
_1 A = T~ Imlh f [ |
= =Nal S ofoJo]...
Q. o 0 S 7 __ |0l afol- |y
H = >g W — a8t = S O+&k —|([olol1]..
o c Q.
2 5 o T
1 J n n L 1]/ -8- - ; _
- B - k+1 x k+1 identity
— _ matrix, but with 0
bias column and weights measurements in upper left

k basis functions



2 k
R|dge Wridg argmmZ( ’wo+2wh z;) ) +)‘sz'2
i=1

RGngSSlOn = argmin (Hw — t)" (Hw —t) + A WTIO+kW
closed form o residual error ’
solution
F(W) — (HW — t)T(HW — t) -+ )\WT]()_I_kW

VwF(w) =0
2H' (Hw —t) + 2\ Ij w = 0

w:jz'dge — (HTH =+ )\IO—I—k)_lHTt



Regression solution: simple matrix math
2

N k
w?‘idge_argmuijnZ(t<x TUO—|_ZTU2 €L j > +)\Zw22
1=1

j=1

= argmin (Hw —t)"(Hw —t) + A WT]0+kW

N

residual error

wyigge = (HTH + Moqx) " H' t

Compare to un-regularized regression:

w'=(H"H)"'H"t



Ridge Regression

How does varying lambda change w?

N 2 k
Wridge = Arg H}jﬂ Z (t(x (wo + Z wihi (; ) +A Z w;
i=1

j=1

— Larger A? Smaller A?
— As A 207

 Becomes same a MLE, unregularized

— AS A > X?
 All weights will be 0!



Ridge Coefficent Path

0.6

== |Ccavol
=—— |weight
05| —@m age
=== |bph
0.4 || ==6=svi

lcp
m=@== gleason
—6— pgg45

From
Kevin Murphy
textbook

0.3

0.2

0.1

Feature Weight

O0r @

-0.1r

-0.2

0 5 10 15 20 25 30

Larger A & | |UAJ| ‘2 - Smaller A



How to pick lambda®

« EXxperimentation cycle

— Select a hypothesis fto best
match training set

— Tune hyperparameters on
held-out se

 Try many different values of
lambda, pick best one

 Or, can do k-fold cross
validation

— No held-out set Held-Out
— Divide training set into k (Development)
subsets Data
— Re?eatedly train on k-1 and
test on remaining one Test Test
— Average the results Data Data




Why squared regularization?
* Ridge:

N
b =Y (1) = o + Y hta) ) 433
1=1

=1
 LASSO:
N 2 k
WL ASSO = arg muljnz < (wo + sz T j ) + )\Z |w;|
=1 i=1

— Linear penalty pushes more weights to zero
— Allows for a type of feature selection

— But, not differentiable and no closed form
solution....



Geometric Intuition

Ridge Regression

Lasso

From
Rob
Tibshirani
slides



LASSO Coefficent Path

0.7 O,
" | @ |cavol
0.6 —8— lweight ||
-—— age
e @ |bph
.E’) o - fg; ‘ From
%’ 0.4 =~ gleason Kevin Murj
—8— pgg45
D o3 -0-6-6-6-6-90 _ textbook
= g - ~ _O-60—-0—-60-60-60-6—-6—C€
© 02 o 000000 00OTE
m ’ ’, a - -
L o1 / 5
OF € - : A "'; ?‘i - -J
-0.1
-0.2 ! P
0 5 10 15 20 25

Larger A € ‘ ‘TD‘ ‘1 > Smaller A



Bias-Variance tradeoff — Intuition

* Model too simple: does |

not fit the data well o AN
— A biased solution o

* Model too complex: small
changes to the data, t
solution changes a lot ol

— A high-variance solution

1t M=9 A




Bias-Variance Tradeoff

* Choice of hypothesis class introduces learning
bias

— More complex class — less bias

— More complex class — more variance
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Training set error » = sy (- Cunce)

* Given a dataset (Training data)
 Choose a loss function
— e.g., squared error (L,) for regression

* Training error: For a particular set of
parameters, loss function on training data:

Ntraz'n 2
1
errorirain(W) = N Z <t(xj) — Zwihi(xj))



Training error as a function of mo

errorirain(W) =

3 i
A
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Prediction error ke

* Training set error can be poor measure ——-=.
of “quality” of solution

* Prediction error (true error): We really
care about error over all possibilities:

errorirue(wW) = FEy (t(x)szhz(x)>

= / <t(x)Zwihi(x)> p(x)dx



Prediction error as a function of model

complexity

errorirain(W) =

errorimye(W)
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Computing prediction error

* To correctly predict error

* Hard integral!
« May not know t(x) for every x, may not know p(x)

ErTorrye(W) = /(t(x)—Zwihi(x)> p(x)dx

* Monte Carlo integration (sampling approximation)
« Sample a set of i.i.d. points {X;,...,X} from p(x)
* Approximate integral with sample average

errorirye(W) & % Z (t(Xj) — Z wz‘hz‘(Xj)>



Why training set error doesn’t
approximate prediction error?

 Sampling approximation of prediction error:

ETTOTtrye(W) = % (t(Xj) — Z wihi(xj))

* Training error :

Ntraz'n 2
1
erTOTtrain(W) = N > (t(xj)_zwihi(xj)>
rain =

* Verysimilar equations!!!

— Why is training set a bad measure of prediction error???



Why training set error doesn’t
approximate prediction error?

* oq Because you cheated!!!

Training error good estimate for a single w,
But you optimized w with respect to the training error,

and found w that is good for this set of samples

Training error is a (optimistically) biased
estimate of prediction error

* Verysimilar equations!!!

— Why is training set a bad measure of prediction error???



Test set error = e (1)~ Tt

* Given a dataset, randomly split it into two
parts:

— Training data — {X,..., Xyirain}
— Test data — {X,, ..., Xyect}

e Use training data to optimize parameters w

e Test set error: For the final solution w*,
evaluate the error using:

Ntest

2
1
erroriest(w) = N, Z (t(Xj)—Z’wihz‘(Xj)>

j=1




Test set error as a function of model

complexity

ETTOT train(W) =

errorimye(W)
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Overfitting: this slide is so important we

are looking at it again!
* Assume:
— Data generated from distribution D(X Y)
— A hypothesis space H

* Define: errors for hypothesis 7 € H
— Training error: error,, . (h)
— Data (true) error: error,, (h)

« \We say / overfits the training data if there exists
an h’ € H such that:

errOrtrain(h) < errOrtmin(h,)
and
errortrue(h) > errartme(h’)



Summary: error estimators

e Gold Standard:

ErTorirye(W) = /(t(X)—sz‘hz'(X)> p(x)dx

* Training: optimistically biased

Nt'r’ain 2
ErTO  train(W) = N <t(xj) — Z w@-hi(xj)>

e Test: our final measure

erroriest(w)
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Error as a function of number of training
examples for a fixed model complexity
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Error as function of regularization
parameter, fixed model complexity




Summary: error estimators

. Be careful!l!

Test set only unbiased if you never never ever ever
do any any any any learning on the test data

For example, if you use the test set to select
the degree of the polynomial... no longer unbiased!!!
(We will address this problem later in the quarter)

e Test: our final measure

Ntest

erroriest(wW) = N:est Z (t(xj) —Zwihi(xj)>

j=1




What you need to know

* Regression
— Basis function = features
— Optimizing sum squared error
— Relationship between regression and Gaussians

* Regularization
— Ridge regression math
— LASSO Formulation
— How to set lambda

e Bias-Variance trade-off



