
CSE 446 
Machine Learning 

Instructor: Ali Farhadi   
ali@cs.washington.edu 

Slides adapted from Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer 



Logistics 
•  Instructor: Ali Farhadi 

•  Email: ali@cs 
•  Office: CSE 652 

•  TAs:  
•  Naozumi Hiranuma (hiranumn@cs) 
•  William Montgomery (wmonty@cs) 
•  Pavel Panchekha (pavpan@cs) 
•  Joe Redmon (pjreddie@cs) 

•  Web: 
http://courses.cs.washington.edu/courses/cse446/16wi/ 

•  Please read website carefully for academic integrity, late policy, etc. 



Textbooks 

Machine Learning: a Probabilistic 
Perspective 
Kevin Murphy, 
 MIT Press, 2013. 

Optional:  
 
•  Pattern Recognition and Machine Learning, C. Bishop, 

Springer, 2007  

•  The Elements of Statistical Learning, Friedman, Tibshirani, 
Hastie, Springer, 2001 

•  Machine Learning, Mitchell, MacGraw Hill, 1997 







A Few Quotes 
•  “A breakthrough in machine learning would be worth 

ten Microsofts” (Bill Gates, Chairman, Microsoft) 
•  “Machine learning is the next Internet”  

(Tony Tether, Director, DARPA) 
•  Machine learning is the hot new thing”  

(John Hennessy, President, Stanford) 
•  “Web rankings today are mostly a matter of machine 

learning” (Prabhakar Raghavan, Dir. Research, Yahoo) 
•  “Machine learning is going to result in a real 

revolution” (Greg Papadopoulos, CTO, Sun) 
•  “Machine learning is today’s discontinuity”  

(Jerry Yang, CEO, Yahoo) 



So What Is Machine Learning? 

•  Automating automation 
•  Getting computers to program themselves 
•  Writing software is the bottleneck 
•  Let the data do the work instead! 
•  The future of Computer Science!!! 



? 

  Traditional Programming 

  Machine Learning 

Computer 
Data 

Program 
Output 

Computer 
Data 

Output 
Program 



Magic?  

No, more like gardening 
 
•  Seeds = Algorithms 
•  Nutrients = Data 
•  Gardener = You 
•  Plants = Programs 



What is Machine Learning ? 
(by examples) 



Classification 
 

from data to discrete classes 



Spam filtering  
data prediction 

Spam 
vs 
Not Spam 
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Object detection 

Example training images 
for each orientation 

(Prof. H. Schneiderman) 



Weather prediction 



Regression 
 

predicting a numeric value 



Stock market 



Weather prediction revisted 

Temperature 
 

72° F 



Modeling sensor data 

•  Measure temperatures 
at some locations 

•  Predict temperatures 
throughout the 
environment SERVER
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Similarity 
 

finding data 



Given image, find similar images 

http://www.tiltomo.com/ 



Collaborative Filtering 



Clustering 
 

discovering structure in data 



Clustering Data: Group similar things 



Clustering images 

[Goldberger et al.] 

Set of Images 



Clustering News 



Embedding 
 

visualizing data 



Embedding images 

27 ©2009 Carlos Guestrin 

•  Images have 
thousands or 
millions of pixels. 

•  Can we give each 
image a coordinate, 
such that similar 
images are near 
each other? 

[Saul & Roweis ‘03] 



Embedding words 

28 

[Joseph Turian] 



Embedding words (zoom in) 
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[Joseph Turian] 



Reinforcement Learning 
 

training by feedback 



Learning to act 

•  Reinforcement 
learning 

•  An agent  
–  Makes sensor 

observations 
–  Must select action 
–  Receives rewards  

•  positive for “good” 
states 

•  negative for “bad” 
states 



Growth of Machine Learning 
•  Machine learning is preferred approach to 

–  Speech recognition, Natural language processing 
–  Computer vision 
–  Medical outcomes analysis 
–  Robot control 
–  Computational biology 
–  Sensor networks 
–  … 

•  This trend is accelerating 
–  Improved machine learning algorithms  
–  Improved data capture, networking, faster computers 
–  Software too complex to write by hand 
–  New sensors / IO devices 
–  Demand for self-customization to user, environment 



Supervised Learning: find f 
•  Given: Training set {(xi, yi)  | i = 1 … n} 
•  Find: A good approximation to  f  : X à Y 

Examples: what are X and Y ? 
•  Spam Detection 

–  Map email to {Spam,Ham}  

•  Digit recognition 
–  Map pixels to {0,1,2,3,4,5,6,7,8,9}  

•  Stock Prediction 
–  Map new, historic prices, etc. to (the real numbers) 



Example: Spam Filter 

•  Input: email 
•  Output: spam/ham 
•  Setup: 

–  Get a large collection of 
example emails, each 
labeled “spam” or “ham” 

–  Note: someone has to hand 
label all this data! 

–  Want to learn to predict 
labels of new, future emails 

•  Features: The attributes used to 
make the ham / spam decision 
–  Words: FREE! 
–  Text Patterns: $dd, CAPS 
–  Non-text: SenderInContacts 
–  … 

Dear Sir. 
 
First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. … 

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT. 
 
99  MILLION EMAIL ADDRESSES 
  FOR ONLY $99 

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened. 



Example: Digit Recognition 
•  Input: images / pixel grids 
•  Output: a digit 0-9 
•  Setup: 

–  Get a large collection of example 
images, each labeled with a digit 

–  Note: someone has to hand label all 
this data! 

–  Want to learn to predict labels of new, 
future digit images 

•  Features: The attributes used to make the 
digit decision 
–  Pixels: (6,8)=ON 
–  Shape Patterns: NumComponents, 

AspectRatio, NumLoops 
–  … 

0 

1 

2 

1 

?? 



Important Concepts 
•  Data: labeled instances, e.g. emails marked spam/ham 

–  Training set 
–  Held out set (sometimes call Validation set) 
–  Test set 

•  Features: attribute-value pairs which characterize each x 
 

•  Experimentation cycle 
–  Select a hypothesis f to best match training set 
–  (Tune hyperparameters on held-out set) 
–  Compute accuracy of test set 
–  Very important: never “peek” at the test set! 

•  Evaluation 
–  Accuracy: fraction of instances predicted correctly 

•  Overfitting and generalization 
–  Want a classifier which does well on test data 
–  Overfitting: fitting the training data very closely, but not 

generalizing well 
–  We’ll investigate overfitting and generalization formally in a 

few lectures 

Training 
Data 

Held-Out 
Data 

Test 
Data 



A Supervised Learning Problem 
•  Consider a simple, 

Boolean dataset: 
–   f  : X à Y 
–  X = {0,1}4 

–  Y = {0,1} 
 

•  Question 1: How should 
we pick the hypothesis 
space, the set of possible 
functions f ? 

•  Question 2: How do we 
find the best f  in the 
hypothesis space? 

Dataset: 



Most General Hypothesis Space  
Consider all possible boolean functions over four 
input features!  

Dataset:  
•  216 possible 

hypotheses 

•  29 are consistent 
with our dataset 

•  How do we 
choose the best 
one? 
 



A Restricted Hypothesis Space  
Consider all conjunctive boolean functions. 

 
•  16 possible 

hypotheses 

•  None are 
consistent with 
our dataset 

•  How do we 
choose the best 
one? 
 

Dataset: 



Another Sup. Learning Problem 
•  Consider a simple, 

regression dataset: 
–   f  : X à Y 
–  X =  

–  Y = 
 

•  Question 1: How should 
we pick the hypothesis 
space, the set of possible 
functions f ? 

•  Question 2: How do we 
find the best f  in the 
hypothesis space? 

Dataset: 10 points generated 
from a sin function, with noise  
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Hypo. Space: Degree-N 
Polynomials  

•  Infinitely many 
hypotheses 

•  None / Infinitely 
many are 
consistent with 
our dataset 

•  How do we 
choose the best 
one? 
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Key Issues in Machine Learning 

•  What are good hypothesis spaces? 
•  How to find the best hypothesis? (algorithms / 

complexity) 
•  How to optimize for accuracy of unseen testing 

data? (avoid overfitting, etc.) 
•  Can we have confidence in results? How much 

data is needed? 
•  How to model applications as machine learning 

problems? (engineering challenge) 



Logistics: Evaluation 

•  4 homeworks (70% total) 
– Assigned in weeks 2,4,6,8 
– Due two weeks later 

– Can take time: start early!!!! 
•  Final example (25%) 
•  Course participation (5%) 

–  includes in class, message board, etc. 



Homeworks 
•  HW1: Decision Trees 

– Release: 1/8, Due: 1/22 
•  HW2: Classifiers 

– Release: 1/22, Due: 2/5 
•  HW3: SVMs and Ensembles  

– Release: 2/5, Due: 2/19 
•  HW4: Clustering and dimensionality 

Reduction 
– Release: 2/19, Due: 3/4 
 
 



Calibration  

•  Linear Algebra 
•  Eigenvectors 
•  Covariance 
•  Entropy 
•  Conditional Entropy 
•  Least Squares 
•  Gradient 
•  Gradient descent 

CS 
EE 
Math 
Stat 
Others 
Year 



Overload Request 

http://tinyurl.com/hjl3tpj 

Lion 


