CSE446: Neural Networks
Winter 2016

Ali Farhadi

Slides adapted from Carlos Guestrin and Luke Zettlemoyer



Human Neurons /
Axonaleﬁiiuaﬁon

!\ Axon from another cell

Synapse

Switching time

e ~(0.001 second
Number of neurons
— 10%0

Connections per neuron  ceibedyorsoms
_ 104-5

Scene recognition time

— 0.1 seconds

Number of cycles per scene recognition?
— 100 = much parallel computation!

Dendrite

Nucleus ( ///.

Synapses



Perceptron as a Neural Network

n
1if X w.x.->0
i=0 Ut

-1 otherwise

This is one neuron:
— Input edges x, ... x,, along with basis
— The sum is represented graphically
— Sum passed through an activation function g



Sigmoid Neuron

1
wo + W;xr;) =
g(wo EZ: i) 1 4+ e~ (wot2_; wiz;)
XI
x2
net:igowi X; 5 = lner
1+e

Just change ¢!

* Why would be want to do this?

* Notice new output range [0,1]. What was it before?
* Look familiar?



Optimizing a neuron 5-7(s() = /' (s(x))'@

We train to minimize sum-squared error

(W) = %Z[yj—g<wo+zwix§>]2

@)

— —Z[yg — g(wo +sz

T ) =T —w.g(wg — E wZ:U;Z) = a:gg’(wg + g wzzcg)
1 . .
(4 1

oL(W')

= S I — g(wo + Y wig))] @) g (wo + > wiz?)
7 7 )

8102'

Solution just depends on g’: derivative of activation function!



Re-deriving the perceptron update

X — S - gwo+ Y wiad)] @ g'(wo + Y wiad)
J z ’

ow;
>
L if - x.>0
g = { ! i:()wl xl

-1 otherwise

oL(W)

811)7;

= S I — g(wo + > wiz))] «
7 )

For a specific, incorrect example:
* w=w + y*x (our familiar update!)



Sigmoid units: have to differentiate g

8@? ) = W - gCwo + Y wiah)] @ g/ (wo + 3w
() j 0 ()
1 /
9(z) = 7= J@)=9@)1-g())

w,;  — wi—l—nZaTg(Sj
J

¥ = [y —g(wo+ Y wiz)]g/ (1 - ¢)

¢ = glwo+> wil)



Aside: Comparison to logistic

regression
* P(Y|X) represented by: o
1
P(Y =1 ‘ L, W> _ 1+ e—(’UJO"‘ZZ‘ W;T;)
| = g(wg + szmz)
* Learning rule — MLE: ‘

oL(W)

ow;

= Y [y - P(YI =12l W)]
j
= wa[yj—g(wo—FZwix{)]
7 )
w; — w;+ny xé
J 5j — yj—g(wO—I—Zwi:B‘g)



Perceptron, linear classification,
Boolean functions: x. €{0,1}

Can learn x; v x,? -
* -0.5+x,+Xx,
Can learn x; A x,? -
¢ -1.5+x,+X, ’
Can learn any conjunction or disjunction?

* 0.5+x,+...+X,

* (-n+0.5) + x, + ... + X,

Can learn majority?

* (-0.5%n) +x,+ ... + X,

What are we missing? The dreaded XOR/, etc.




Going beyond linear classification

Solving the XOR problem
y =% XOR X, = (X1 A 7X3) V (X5 A7X4)

V= (X A —X5)
=-1.5+2x,-X,
Vy = (X A —Xy)
= -1.5+2x,-X,
y=V,VV,
=-0.5+v,+v,




Hidden layer

e Single unit:

out(x) = g(wg+ Z W;T;)

* 1-hidden layer:
out(x) = g (wo + Zw];g(wé + Z wfxi)‘)
k 1

* No longer convex function!



Example

data for NN
with hidden .
A target function:

I aye I Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??



A network:

Learned
weights for
hidden layer

Learned hidden layer representation:

Input

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

N A

Hidden
Values

89 .04 .08
01 .11 .88
01 .97 .27
99 97 .71
03 .05 .02
22 .99 .99
.80 .01 .98
60 .94 .01

R A s

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001




Forward propagation
1-hidden layer:

out(x) = g (’wo + Zwkg(wé + waxz))
k )

Compute values left G G
to right

1. Inputs: Xy, ..., X, (xy) (vy) 0
2. Hidden: v, ..., V. ’
3. Output:y A\

@ (2




Gradient descent for 90(W)
1-hidden layer Owy,

Dropped w, to make derivation simpler

(W) = %Z[yj_out(xj)]Q
j
/ . B k, .
out(x) = g (Z wk/g(z wz-k/ a:z/)) U]?g — g (Z (T %/)
K/ v ’

oL(W) S iy - Out(xj>]8out(x3)

=1
. Jout(x) i j
out(r) =g Zwk/v‘; Dwy, = VL9 Z’wk”vk
K/ / k!
Gradient for last layer same as the single node
case, but with hidden nodes v as input!

(‘9wk 8wk




Gradient descent for Se(W)
1-hidden layer Owg

Dropped w, to make derivation simpler

(w) = %g[yj—ouuxj)ﬁ ; / /
8—33]”(9(35)) = f(g(z))g (z)

out(x) = g (Z wk/g(z wilﬂ//xi/))
K/ 7/

OL(W) il iy dout(x?)
o ; by = ot G5 For hidden layer,
two parts:
aout(x) (Zw g(zw - )> g<zwka>/ Normal update
i for single neuron
* Recursive
computation of
gradient on

output layer



Multilayer neural networks

Inputs Outputs

Inference and

Learning:

 Forward pass:
left to right, eac

\
N\ O 7 /NS O/
N7

% o,
hidden layer in “";'#.%‘;:?};\
turn T NG OOMT NS
« Gradient XX \':0'3‘(&; “‘3‘/ \"5%‘ Q
7RO\ %0‘\\\
computation: W2\ & /‘\
right to lefft, O
propagating

gradient for
each node




Forward propagation — prediction

* Recursive algorithm
e Start from input layer
* Output of node V, with parents U,,U,,...:

Vi, = g(zwé“m)
1




Back-propagation — learning

Just gradient descent!!!
Recursive algorithm for computing gradient

~or each example
— Perform forward propagation

— Start from output layer
* Compute gradient of node V, with parents U,,U,,...
 Update weight w*
* Repeat (move to preceding layer)



Back-propagation — pseudocode

Initialize all weights to small random numbers

e Until convergence, do:

— For each training example x,y:
1. Forward propagation, compute node values V,
2. For each output unit o (with labeled output y):

6,=V,(1-V,)(y-V,)
3. For each hidden unit h:
6, = Vh(1-Vy) z|< in output(h) Wh,kOk
4. Update each network weight w;; from node i to node j

Wi, = Wi+ NOX;,



Convergence of backprop

* Perceptron leads to convex optimization
— Gradient descent reaches global minima

 Multilayer neural nets not convex
— Gradient descent gets stuck in local minima
— Selecting number of hidden units and layers = fuzzy process
— NNs have made a HUGE comeback in the last few years!!!

* Neural nets are back with a new name!!!!
— Deep belief networks
— Huge error reduction when trained with lots of data on GPUs



Overfitting in NNs

* Are NNs likely to overfit?

— Yes, they can represent
arbitrary functions!!!

* Avoiding overfitting?
— More training data

— Fewer hidden nodes / better
topology

— Regularization
— Early stopping




Object Recognition

stone wall [ 0.95, web ] dishwasher [0.91, web ] car show [0.99, web ]

Pt s P SR COM

[ ——

tractor [ 0.94, web ]

Slides from Jeff Dean at Google



Number Detection

Ju '. ?f’

Slides from Jeff Dean at Google



Acoustic Modeling for Speech Recognition

(OO0000000000@O0000) €—

)

(COO0000000000)

(COO0000000000)

(OCO0000000000)

BT § B
L - % % §i
e Y

Close collaboration with Google Speech team

IAERRZI
n-k‘-_"
L

=7 0 label

" - =N
2 a

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English
(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android

Slides from Jeff Dean at Google



2012-era Convolutional Model for Object Recognition

Softmax to predict object class (©00000000000©00000)

Fully-connected layers

Convolutional layers
(same weights used at all
spatial locations in layer)

Convolutional networks

developed by
Yann LeCun (NYU)

Basic architecture

CO0000000000)

OO0O0000000000)

Layer 7

Input

developed by Krizhevsky, Sutskever & Hinton
(all now at Google).

Won 2012 ImageNet challenge with 16.4% top-5 error rate

Slides from Jeff Dean at Google



2014-era Model for Object Recognition

o
=]
=]

Module with 6 separate =m |
convolutional layers ===
=1

24 layers deep! mome|

Developed by team of Google Researchers:
Won 2014 ImageNet challenge with 6.66% top-5 error rate

Slides from Jeff Dean at Google



Good Fine-grained Classification

“hibiscus” “dahlia”
Slides from Jeff Dean at Google



Good Generalization

Both recognized as a
‘(meal”

Slides from Jeff Dean at Google



Sensible Errors

“snake”

Slides from Jeff Dean at Google



Works in practice

for real users.

Wow.
The new Google plus photo search is a bit insane.

| didn’t tag those...:)

( Q, statue X )

o

Slides from Jeff Dean at Google



Works in practice

for real users.

Google Plus photo search is awesome. Searched with keyword
'‘Drawing’ to find all my scribbles at once :D

Slides from Jeff Dean at Google



Object Detection




—

YOLO

Bounding Box Prediction
Coordinates: x,y,w,h

224 [ -

Objectness Prediction
0-1 probabilities

e ) 73% ><:|:|><:7

3 64 1024 4096 25
Conv. Layer Convolutional Layers Conn. Layer  Conn. Layer
7x7x64-5-2 Detection Layer Class Prediction

Multiclass probabilities




What you need to know about neural
networks

* Perceptron:
— Relationship to general neurons

 Multilayer neural nets
— Representation
— Derivation of backprop
— Learning rule

e QOverfitting



Course Evaluation

https://uw.iasystem.org/survey/157086



