CSE 446 Expectation Maximization

(One) bad case for "hard assignments"?

- Clusters may overlap
- Some clusters may be "wider" than others
- Distances can be deceiving!

Probabilistic Clustering

- We can use a probabilistic model!
 - allows overlaps, clusters of different size, etc.
- Can tell a *generative* story for data
 P(X|Y) P(Y) is common
- Challenge: we need to estimate model parameters without labeled Ys

Y	X ₁	X ₂
??	0.1	2.1
??	0.5	-1.1
??	0.0	3.0
??	-0.1	-2.0
??	0.2	1.5
•••		

What Model Should We Use?

 Depends on X! 	Υ	X ₁	X ₂
 Here, maybe Gaussian Naïve Bayes? – Multinomial over 		0.1	2.1
		0.5	-1.1
clusters Y, Gaussian over each X _i given Y $p(Y_i = y_k) = \theta_k$??	0.0	3.0
	??	-0.1	-2.0
	??	0.2	1.5
$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_{ik}^2}}$			
$\Gamma(\Lambda_i - x + 1 - g_k) - \frac{\sigma_{ik}}{\sigma_{ik}} \sqrt{2\pi}$			

Geometric Interpretation

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_{ik}^2}}$$

What if the Clusters are not Axis-Aligned?

- What if the input dimensions X_i co-vary
- Gaussian Mixture Models
 - Assume m-dimensional data points
 - P(Y) still multinomial, with K classes
 - P(X|Y=i), i=1..K are K multivariate
 Gaussians
 - mean μ_i is m-dimensional vector
 - variance Σ_i is m by m matrix
 - |x| is the determinate of matrix x

$$P(X = x | Y = i) = \frac{1}{\sqrt{(2\pi)^m |\Sigma_i|}} \exp\left(-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i)\right)$$

Multivariate Gaussians

$$P(X = x | Y = k) = \frac{1}{\sqrt{(2\pi)^D |\Sigma_k|}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

Multivariate Gaussians: MLE

$$P(X = x) = \frac{1}{\sqrt{(2\pi)^2 |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\Sigma_{j,j} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

$$\Sigma_{j,k} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j) \cdot (x_{i,k} - \mu_k)$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu) (x_i - \mu)^T$$

The General GMM assumption

- P(Y): There are k components
- P(X|Y): Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i
- Each data point is sampled from a *generative process*:
 - Pick a component at random: Choose component i with probability P(y=i)
 - 2. Datapoint ~ N(μ_i , Σ_i)

Gaussian Mixture Model: MLE

$$P(X = x | Y = k) = \frac{1}{\sqrt{(2\pi)^D |\Sigma_k|}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

single Gaussian

Gaussian mixture

$$\mu_k = \frac{\sum_{i:y_i=k} x_i}{\operatorname{Count}(y_i=k)}$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu) (x_i - \mu)^T$$

$$\Sigma_k = \frac{\sum_{i:y_i=k} (x_i - \mu_k) (x_i - \mu_k)^T}{\operatorname{Count}(y_i = k)}$$

Missing Labels

- Problem: the labels y are unknown!
- If we **already** have a trained model, recovering y is just inference.

$$\begin{split} P(Y_i = k | X_i = x) &= \frac{P(Y_i = k, X_i = x)}{P(X_i = x)} = \frac{P(X_i = x | Y_i = k) P(Y_i = k)}{P(X_i = x)} \\ &\propto P(X_i = x | Y_i = k) P(Y_i = k) \end{split}$$

$$\tilde{w}_{ik} = P(X_i = x | Y_i = k) P(Y_i = k)$$

$$w_{ik} = \frac{\tilde{w}_{ik}}{\sum_{k'=1}^{K} \tilde{w}_{ik'}}$$

Weighted MLE

 If we have label probabilities, can we refit the model?

$$\tilde{w}_{ik} = P(X_i = x | Y_i = k) P(Y_i = k)$$

$$\mu_{k} = \frac{\sum_{i=1}^{N} \widehat{y_{i}} \cdot \widehat{y_{i}} \cdot \widehat{y_{i}} \cdot \widehat{x_{i}}}{\sum_{i=1}^{N} (y_{i} - k)}$$

$$w_{ik} = \frac{\tilde{w}_{ik}}{\sum_{k'=1}^{K} \tilde{w}_{ik'}} \qquad \qquad \Sigma_k = \frac{\sum_{i:y_1 \in \mathcal{K}} (x_i \ \mu_k) \psi_k}{\operatorname{Comp}_i (y_i \ \overline{w_i} k)} \sum_{k' \in \mathcal{K}} (x_i \ \mu_k) \psi_k (x_i$$

EM Algorithm

- Expectation Maximization
- E-step: figure out the probabilities of each label y given the current Gaussians
- M-step: figure out the Gaussian parameters given the probabilities of each label y
- Sound familiar?

Algorithm 1 EM clustering

- 1: Initialize means and covariances (more on this later)
- 2: while not converged do
- 3: E-step: estimate w_{ik} for each datapoint *i* and each cluster *k*
- 4: M-step: fit μ_k and Σ_k using the weighted MLE fit
- 5: end while

EM vs K-Means

- "Hard" Expectation Maximization = K-Means
- E-step: figure out the probabilities of each label y given the current Gaussians, clamp to 0 or 1
- M-step: figure out the Gaussian parameters given the probabilities of each label y
- Exactly K-means if we fit only means and set covariances to identity matrix!
- Viewed another way: EM = "soft" k-means!

Algorithm 2 Hard EM clustering (k-means)

- 1: Initialize means and covariances (more on this later)
- 2: while not converged do
- 3: E-step: estimate $y_i = \arg \max_k w_{ik}$ for each datapoint *i*
- 4: M-step: fit μ_k using the weighted MLE fit, set $\Sigma_k = \mathbf{I}$
- 5: end while

What is the objective we want?

- Maximize the probability of the points $\mathcal{L} = \prod_{i=1}^{N} p(\mathbf{x}_i)$
- But we believe the probability of the points depends on the unknown labels, so we marginalize out the unknown labels...

$$\mathcal{L} = \prod_{i=1}^{N} p(\mathbf{x}_i) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(y_i = k, \mathbf{x}_i)$$

• Which is equal to...

$$\mathcal{L} = \prod_{i=1}^{N} p(\mathbf{x}_i) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(y_i = k, \mathbf{x}_i) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(y_i = k) p(\mathbf{x}_i | y_i = k).$$

What does EM optimize?

• Expected log-likelihood:

$$\hat{\mathcal{L}} = \sum_{i=1}^{N} \sum_{k=1}^{K} q(y_i = k | \mathbf{x}_i) \log p(y_i = k, \mathbf{x}_i) = \sum_{i=1}^{M} E_q[\log p(y_i = k, \mathbf{x}_i)],$$

- M-step: optimize expected log-likelihood
- E-step: make expected log-likelihood more like the actual likelihood by changing q
- Will see connection to marginal likelihood later

EM in Practice

- Avoiding getting stuck
 - Random restarts
 - Take restart with best objective value (expected likelihood)
- Initialization
 - Random assignments:
 - Assign points to clusters at random (choose random yi)
 - Compute initial mean and covariance for each cluster for random assignment
 - Random means
 - Set the means to be randomly chosen datapoints
 - Set covariances to be identity
 - Use k-means

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

