CSE 446 Clustering

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

More Clustering Examples

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small (squared) Euclidean distance

$$\mathcal{L}(C_1,\ldots,C_K) = \sum_{k=1}^K \frac{\sum_{\mathbf{x}_i \in C_k, \mathbf{x}_j \in C_k} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\|\{i : \mathbf{x}_i \in C_k\}\|}$$

Hypothesis Space?

clusters: C_1, \ldots, C_K points: $\mathbf{x}_1, \ldots, \mathbf{x}_N$ cluster labels: y_1, \ldots, y_N $y_i = j \Leftrightarrow \mathbf{x}_i \in C_j$

- An iterative clustering algorithm
 - Assign points to clusters randomly
 - Alternate:
 - Set each mean c^j to the average of its assigned points
 - Assign each example xⁱ to the mean c^j that is closest to it
 - Stop when no points' assignments change

K-Means Example

Algorithm 1 K-means clustering

- 1: Initialize cluster assignments y_i with random integers in $\{1, \ldots, K\}$
- 2: while not converged do
- 3: $\mathbf{c}_k \leftarrow \frac{1}{\|i:y_i=k\|} \sum_{i:y_i=k} \mathbf{x}_i \text{ (average all points with } y_i=k)$
- 4: $y_i \leftarrow \arg\min_k \|\mathbf{x}_i \mathbf{c}_k\|^2$ (assign each point to nearest cluster) 5: end while

Algorithm 1 K-means clustering

- 1: Initialize cluster assignments y_i with random integers in $\{1, \ldots, K\}$
- 2: while not converged do
- 3: $\mathbf{c}_k \leftarrow \frac{1}{\|i:y_i=k\|} \sum_{i:y_i=k} \mathbf{x}_i \text{ (average all points with } y_i=k)$
- 4: $y_i \leftarrow \arg\min_k \|\mathbf{x}_i \mathbf{c}_k\|^2$ (assign each point to nearest cluster) 5: end while

original objective:
$$\mathcal{L}(C_1, \dots, C_K) = \sum_{k=1}^K \frac{\sum_{\mathbf{x}_i \in C_k, \mathbf{x}_j \in C_k} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\|\{i : \mathbf{x}_i \in C_k\}\|}$$

K-means objective: $\hat{\mathcal{L}}(y_1, \dots, y_N, \mathbf{c}_1, \dots, \mathbf{c}_K) = \sum_{k=1}^K \sum_{i:y_i=k} \|\mathbf{x}_i - \mathbf{c}_k\|^2$

Algorithm 1 K-means clustering

- 1: Initialize cluster assignments y_i with random integers in $\{1, \ldots, K\}$
- 2: while not converged do
- 3: $\mathbf{c}_k \leftarrow \frac{1}{\|i:y_i=k\|} \sum_{i:y_i=k} \mathbf{x}_i \text{ (average all points with } y_i=k)$
- 4: $y_i \leftarrow \arg\min_k \|\mathbf{x}_i \mathbf{c}_k\|^2$ (assign each point to nearest cluster) 5: end while

$$\hat{\mathcal{L}}(y_1,\ldots,y_N,\mathbf{c}_1,\ldots,\mathbf{c}_K) = \sum_{k=1}^K \sum_{i:y_i=k} \|\mathbf{x}_i - \mathbf{c}_k\|^2$$

 $\frac{d\hat{\mathcal{L}}}{d\mathbf{c}_k} =$

Algorithm 1 K-means clustering

- 1: Initialize cluster assignments y_i with random integers in $\{1, \ldots, K\}$
- 2: while not converged do
- 3: $\mathbf{c}_k \leftarrow \frac{1}{\|i:y_i=k\|} \sum_{i:y_i=k} \mathbf{x}_i \text{ (average all points with } y_i=k)$
- 4: $y_i \leftarrow \arg\min_k \|\mathbf{x}_i \mathbf{c}_k\|^2$ (assign each point to nearest cluster) 5: end while

$$\hat{\mathcal{L}}(y_1,\ldots,y_N,\mathbf{c}_1,\ldots,\mathbf{c}_K) = \sum_{k=1}^K \sum_{i:y_i=k} \|\mathbf{x}_i - \mathbf{c}_k\|^2$$

What about original objective?

original objective:
$$\mathcal{L}(C_1, \dots, C_K) = \sum_{k=1}^K \frac{\sum_{\mathbf{x}_i \in C_k, \mathbf{x}_j \in C_k} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\|\{i : \mathbf{x}_i \in C_k\}\|}$$

K-means objective:
$$\hat{\mathcal{L}}(y_1, \dots, y_N, \mathbf{c}_1, \dots, \mathbf{c}_K) = \sum_{k=1}^K \sum_{i:y_i=k} \|\mathbf{x}_i - \mathbf{c}_k\|^2$$

 $T \sim T$

$$\sum_{k=1}^{K} \frac{\sum_{\mathbf{x}_i \in C_k, \mathbf{x}_j \in C_k} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\|\{i : y_i = k\}\|} =$$

What about original objective?

original objective:
$$\mathcal{L}(C_1, \dots, C_K) = \sum_{k=1}^K \frac{\sum_{\mathbf{x}_i \in C_k, \mathbf{x}_j \in C_k} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\|\{i : \mathbf{x}_i \in C_k\}\|}$$

K-means objective:
$$\hat{\mathcal{L}}(y_1, \dots, y_N, \mathbf{c}_1, \dots, \mathbf{c}_K) = \sum_{k=1}^K \sum_{i:y_i=k} \|\mathbf{x}_i - \mathbf{c}_k\|^2$$

$$\sum_{k=1}^{K} \frac{\sum_{\mathbf{x}_i \in C_k, \mathbf{x}_j \in C_k} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\|\{i : y_i = k\}\|} = \sum_{k=1}^{K} \sum_{i: y_i = k} \|\mathbf{x}_i - \mathbf{c}_k\|^2$$

K-Means Getting Stuck

• A local optimum:

Why doesn't this work out like the earlier example, with the purple taking over half the blue?

K-Means Questions

- Will K-means converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 If the patterns are very very clear?
- Will it find something interesting?

K-Means in Practice

- Avoiding getting stuck
 - Random restarts
 - Take restart with best objective value
- Better initialization
 - Kmeans++
 - 1 Choose first centroid to be a random datapoint x
 - 2 For each datapoint, compute distance to nearest centroid so far
 - 3 Choose next center randomly among the datapoints, but weight the choice by the squared distance to the nearest centeroid
 - 4 Repeat steps 2 and 3 until all centeroids are chosen

K-Means Questions

- Will K-means converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 If the patterns are very very clear?
- Will it find something interesting?
- How to choose number of clusters?

Agglomerative Clustering

• Agglomerative clustering:

- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters

• Algorithm:

- Maintain a set of clusters
- Initially, each instance in its own cluster
- Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward's method (min variance, like k-means)
- Different choices create different clustering behaviors

Agglomerative Clustering Questions

- Will agglomerative clustering converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 If the patterns are very very clear?
- Will it find something interesting?