Week 7: Learning Theory

Instructor: Sergey Levine

1 A Generalized View of Learning

In this unit, we’ll take a deeper look at issues such as bias and variance, and gain
a deeper understanding of when and why our machine learning algorithms might
perform better or worse. In contrast to previous units, we will not introduce a
new machine learning method, but rather construct a generalized view of various
machine learning methods that allows us to analyze all of them together.

As I've mentioned previously, a machine learning problem consists of data, a
hypothesis space, an objective, and an algorithm. We’ll let D denote our data,
which as usual will consist of attributes x and labels or response variables y,
which may be real-valued or categorical. Our hypothesis space will consist of
functions f(x) that make predictions (either labels or probabilities), and we’ll
assume that we have a loss function L(y, f(x)) that evaluates the quality of
a prediction. For consistency, we’ll assume that lower losses are better. For
example, in linear regression, we might have

1
Ly, () = 5(7) — )",
while in maximum likelihood classification, we might have

L(y, f(x)) = —log f(x)y,

where we assume that f(x) outputs a vector with L, probabilities, such that
f(x)y is the predicted value of p(y). Note that we negate the likelihood, since
the loss will be minimized. We could also write a “0-1” loss

Ly, f(x)) = 6(f (%) # v),

or the exponentiated loss for boosting, or the hinge loss for SVMs.

The last part we have to figure out is the algorithm. In order to analyze
machine learning algorithms at this high level of generality, we’ll simply assume
that the algorithm minimizes the expected loss function on the training set.
That is, our algorithm will do something that looks like
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In practice, many of the more complex hypothesis classes, such as decision trees
or neural networks, only have approximate optimization algorithms: in the case
of decision trees, we use a greedy heuristic, while in the case of neural networks,
we optimize the loss, but cannot guarantee that we will find a global optimum.

At a high level, machine learning is a funny game where we minimize the
loss of a training set, but we actually want to minimize the loss on all the data,
including data that is not in the training set. Specifically, we care about the
generalization error
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Since f is a deterministic consequence of the training set D, we can also write
this expectation as a conditional expectation, to express the fact that, once we
chosen a hypothesis space and algorithm, only the choice of the training set
(which is typically not up to us) determines our generalization error:

ggen,D = E[L(yv f(X))|D]

An interesting quantity to analyze in this case is the expected generalization
error:

Egonsx = [ PDIN)EgenpdD = EIL(y. Fx)) IV,

This is the generalization error we expect to see on all the data in the world,
averaged over the possible training sets of size IV that we can expect to get.
Remember that we make the i.i.d. assumption, which means that we expect
the dataset of size N to be sampled (independently for each datapoint) from
the same distribution as the one we have at test time: p(x,y). This expected
generalization error is a good metric to analyze if we want to understand the
behavior of our hypothesis class, independently of the particular choice of train-
ing set. Another useful value to analyze is the expected error at a particular
point:
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This is the error we expect to see for a particular point x in expectation when
we train f(x) on a dataset of size N.

2 Revisiting Bias & Variance

First, let’s think about a regression model (like linear regression), where f(x)
predicts y € R and we use the loss L(y, f(x)) = (y — f(x))? (where we drop
the factor % for now). Let’s assume that the real data is produced according to
some (unknown) function g(x) such that

y=9(x)+e



where € ~ N(0,02). This means that the real (physical) process that gives rise
to our data is the deterministic function g(x) and some Gaussian noise with
variance o2. This is a very simple model of the randomness in our data, but it
is useful in practice and allows us to analyze the error of our regressor. Let’s
consider Egen n(x) for this model:

(y = f)%x, N
(9(x) + ¢ = f(x))?[x, N]
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x)) + (9(x) — f(x))*|x, N]

}
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The first term E[e?] is the expectation of the square of a zero-mean normally
distributed variable, which is exactly equal to the variance o2. The second term
2E[e(g(x) — f(x))|x, N] is zero, because € has an expectation of zero and is
completely independent of D (which is the only other random variable). Now
let’s analyze the last term (I'll drop the conditioning, it’s always x and N):

Let’s look closer at the middle term: 2(g(x) — E[f(x)))E[E[f(x)] — f(x)]. The

second part of the product E[E[f(x)] — f(x)] simplifies, because the first part
is deterministic, so we can write

E[E[f(x)] - f(x)] = E[f(0)] - E[f(x)] = 0,

and therefore the entire middle term is zero. So we are left with

E[(g(x) = f(x))’] = (9(x) = BEIf()])* + E[(E[f(x)] = f(x))?].

Note that the second term is exactly the equation for the variance of f (x)
(which depends on the random variable D): variance of a random variable a is
E[(E[a] —a)?]! And the first term is the squared distance between the expected

prediction E[f(x)] and the true underlying signal g(x). We call this distance the
bias, so this term is just the bias squared. Therefore, the entire error becomes:

Egen,n (%) = B[] + (9(x) — E[f(x)]))* + E[(E[f(x)] - f(x))?]

= 02 4 Bias + Variance.



Here we can see where the terms bias and variance really come from: the gener-
alization error when averaged over all possible choices of the dataset D consists
of an irreducible error o2 (which is due to the inherently noise in the data), a
bias term Bias that is caused by the expected hypothesis E[f(x)] being unable
to accurately match the true underlying function g(x), and a variance term that
is caused by the variability in the hypothesis f (x) with respect to the choice of
training set D. Note that if some hypothesis f (x) can accurately match g(x),
then FJ f (x)] will match g(x), because averaging the optimal hypotheses over
all possible datasets produces the optimal hypothesisﬂ So the bias is a term
that never goes away if our hypothesis class is not expressive enough. However,
as the size of our dataset D increases, we would expect variance to go down: in
the limit, if the dataset D contains all possible points, then all datasets of that
size look “the same.” Hence, our interpretation from earlier that bias is the
gap between the minimium attainable error (which we see is 02) and the actual
error we observe as N — oo. Note that since our loss function is the squared
loss, we can also rewrite this error in terms of the loss L:

Egen,n (%) = B[] + (9(x) — E[f(x)])* + E[(E[f (x)] — f(x))*]
= 07 + L(g(x), E[f(x)]) + E[L(f(x), E[f(x)])].
Indeed, we can extend this notion of bias and variance to any loss function, as

well as to the classification setting. The extension proceeds as following: first,
we define the mean prediction

This is the prediction that will be made by the optimal hypothesis with respect
to the training error, averaged over all possible training sets D. The bias, just
like above, is simply the loss incurred by the mean prediction against the true
underlying signal:

Bias = L(g(x), (x)).

The variance is the average loss incurred by a hypothesis f (x) relative to the
mean hypothesis f(x), averaged over all possible training sets:

Variance = L(f(x), f(x)).

This definition can be applied to likelihoods, “0-1" losses, hinge losses, etc.

LAs an exercise, it is worthwhile to think about how this idea connects to bagging.
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