
Week 7: Multiclass Support Vector Machines

Instructor: Sergey Levine

1 Support vector machines recap

The support vector machine (SVM) optimization is defined as

min
w,w0,s1,...,sN

1

2
||w||2 + λ

N∑
i=1

si such that

yi(w · h(xi) + w0) + si ≥ 1 ∀i ∈ {1, . . . , N}
si ≥ 0 ∀i ∈ {1, . . . , N}

As we saw in the previous lecture, solving this optimization recovers a linear
classifier of the form y = sign(w ·h(x)+w0) that minimizes the hinge loss for all
misclassified points and maximizes the size of the margin (the distance to the
closest point to the decision boundary). The term “support vector” refers to
the vectors from the decision boundary to the closest points. Note that moving
any point that is correct classified and further from the decision boundary than
the margin will not affect the optimal weights, hence the term “support vector:”
these vectors “support” the boundary, while all others do not.

2 Multiclass SVMs

Lastly, we’ll briefly discuss how we can use SVMs when we have more than
two classes. There are two main approaches we’ll discuss: (1) one-against-all
classifiers and (2) multiclass SVMs.

One-against-all classification is the simplest way to adapt SVMs to multiclass
classification. In this scheme, instead of solving a single learning problem with
Ly classes, we instead solve Ly binary problems, each of which requires us to
classify the current class j against all other classes. So we simply construct Ly

datasets, for each of which the label is yij = δ(yi = j), and we get Ly weight
vectors w1, . . . ,wLy . Now we just need to figure out how to classify a new point
x?. The idea is very simple: the further the point is from the decision boundary
in the “positive” direction, the more likely we think it is to belong to that class.
So we simply choose the point for which the point is furthest from the boundary
in the positive direction, and set the class according to:

y? = arg max
j
h(x?) ·wj + w0,j .
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One-against-all classification is reasonable and can work quite well, though it
requires training multiple SVMs. We can also train a single SVM to perform
multiclass classification directly, though this is a little bit more complex.

The intuition behind the multiclass SVM is that, if our classification rule is

yi = arg max
j
h(xi) ·wj + w0,j ,

we should simply make sure that if yi = j, then h(xi) ·wj +w0,j is greater than
h(xi) · wj′ + w0,j′ for all j′ 6= j by the largest margin, in the same way that
we make sure that h(xi) ·wj +w0,j ≥ 1 in the binary SVM. So we can directly
optimize over all of our decision boundaries with constraints that enforce it, and
the same objective as before (but now summed over all decision boundaries):

min
w1,...,wL1

,w0,1,...,w0,Ly ,s1,...,sN

1

2

Ly∑
j=1

||wj ||2 + λ

N∑
i=1

si such that

wyi · h(xi) + w0,yi + si ≥ wj′ · h(xi) + w0,j′ + 1 ∀i ∈ {1, . . . , N},∀j′ 6= yi

si ≥ 0 ∀i ∈ {1, . . . , N}
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