
Week 6: Support Vector Machines

Instructor: Sergey Levine

1 Linear Classifiers without Probabilities

So far, we’ve seen a number of different methods for classification: decision
trees, näıve Bayes, logistic regression, and neural networks. A common theme
has been that linear classifiers (näıve Bayes and logistic regression) can be op-
timized globally, while nonlinear classifiers (decision trees and neural networks)
are more powerful, but generally lack global optimization methods: decision
trees are optimized heuristically, while neural networks converge to locally op-
timal solution (though these solutions in practice are typically quite good). In
this lecture, we’ll come back to linear classifiers, for which we can construct
simple global optimization methods. We’ll then explore how these linear clas-
sifiers can be made into powerful nonlinear classifiers using something called
the kernel trick. We’ll derive a type of classifier called a support vector ma-
chine (SVM), which does not attempt to model probabilities, but instead tries
to directly separate positive and negative examples with the decision boundary.

First, let’s review linear classifiers. When we discussed logistic regression,
we talked about a linear classifier of the form

y =

{
−1 if w · h(x) < 0
+1 if w · h(x) ≥ 0

This very simple classifier is determined entirely by the weights w, just like lo-
gistic regression. Note that we use −1 as the negative label here for convenience
(instead of 0), so that we can easily define our classifier as y = sign(w · h(x)).
What if we directly try to push the boundary w such that positive examples
are all on one side and negative examples are all on the other? We can do this
with an iterative algorithm that is reminiscent of stochastic gradient descent.

Algorithm 1 Perceptron training

1: w← ~0
2: for t in 1, . . . , T (T passes over the data) do
3: for i in 1, . . . , N (step over each datapoint) do
4: if sign(w · h(x)i) 6= yi then
5: w← w+yih(x)i (push w toward h(x)i if yi = +1 or away otherwise)
6: end if
7: end for
8: end for

1

This algorithm can be interpreted as stochastic gradient descent (SGD) with
a learning rate of 1 and a batch size B = 1. But what objective is this algorithm
optimizing? Well, it’s pretty clear that this algorithm will push the decision
boundary so as to reduce the number of incorrect classifications, since each in-
correct classification will push the decision boundary to make that classification
more correct (it would be interesting to compare this update to the gradient in
logistic regression!). We can check that the gradient in this case is the gradient
of the following objective function (which we are trying to minimize):

L(w) =

N∑
i=1

max(−yi(w · h(x)i), 0).

That is, if yi(w · h(x)i) < 0, meaning that sign(w · h(x)i) 6= yi, we incur a
cost equal to |w · h(x)i|, otherwise we incur a cost of zero. This is referred to
as a hinge loss, because the loss increases linearly as we get further away from
the decision boundary in the “wrong” direction, but is zero for any correctly
classified example.

We can also write down the objective for the perceptron as a constrained
optimization problem, as following:

min
w,s1,...,sN

N∑
i=1

si such that

yi(w · h(xi)) + si ≥ 0 ∀i ∈ {1, . . . , N}
si ≥ 0 ∀i ∈ {1, . . . , N}

The constraints say first that we should have yi(w·h(xi)) ≥ 0 whenever possible,
but if we have yi(w · h(xi)) < 0, we can add si to it to make it greater than or
equal to zero 0, and that incurs a cost. And of course each si must be positive
(so we don’t get a “bonus” for putting correct classifications further from the
decision boundary). This type of optimization is called a linear program, and
it can be solved exactly using standard linear program solvers.

2 Maximizing the margin

There are a few problems with perceptrons. One of the issues is that, if we
classify all the points correctly, we still have potentially an infinite number of
decision boundaries we can choose, and there is no pressure to make the decision
boundary “far” from any of the points: a boundary that passes very very close
to a point is just as good as one that gives it a wide margin. We could try to
address this simply by removing the constraint that si ≥ 0, but then we will
push points that are already far from the boundary even further away. That is
not really what we want. We want to push away those points that are too close
to the boundary.

We can accomplish this by instead saying that the classifier should not only
get each point right, but it should get it right by some margin γ, and then

2

maximize that margin. First, let’s get rid of the slack variables si (we’ll put
them them back in later), and rewrite the perceptron as a constraint satisfaction
problem:

find w such that yi(w · h(xi)) ≥ 0 ∀i ∈ {1, . . . , N}.

We can satisfy this constraint if the data is linearly separable. To transform
this into the max margin formulation, we have to figure out how far away each
point is from the line (or plane) w · h(xi) = 0 and determine the margin (the
minimum distance over all points), and then maximize this margin. We could
write the margin like this

γ̂ = min
i
yi(w · h(xi)).

However, this kind of margin is not very useful, because we could simply scale w
by a constant and the boundary w ·h(xi) = 0 wouldn’t change, since w ·h(xi) =
10w · h(xi) = 0.0001w · h(xi), etc. Indeed, we can always choose a scale for w
to make γ̂ be equal to any positive constant: we simply rescale w by γ̂/||w||!

We could instead constrain w so that ||w|| = 1, but this constraint is difficult
to enforce, since it’s not linear. Instead, we can define a geometric margin
according to γ = γ̂/||w||. This removes the extra scaling parameter, so that we
can’t cheat to get a bigger margin just by scaling all entries in w. Using this
formulation, we can write a max-margin optimization problem as follows:

max
w,γ

γ̂

||w||
such that

yi(w · h(xi)) ≥ γ̂ ∀i ∈ {1, . . . , N}

The constraint forces γ̂ = mini y
i(w ·h(xi)), since we must have all yi(w ·h(xi))

to be at least as large as γ̂, and because we want γ̂ to be small, it must take on
the value of the smallest margin.

Recall, however, that we can always rescale w such that γ̂ can be equal
to whatever we want, so this degree of freedom is rundant : if we change γ̂ for
example by multiplying by 10, we can get the same exact margin by multiplying
each entry in w by 10. That means that we can fix γ̂ to a constant without loss
of generality. In particular, we can set γ̂ = 1, and then solve

max
w

1

||w||
such that

yi(w · h(xi)) ≥ 1 ∀i ∈ {1, . . . , N}

Maximizing 1
||w|| corresponds to minimizing ||w||, which in turn is the same as

minimizing ||w||2 =
∑
kw

2
k, so we can rewrite the problem again as follows:

min
w
||w||2 such that

yi(w · h(xi)) ≥ 1 ∀i ∈ {1, . . . , N}

3

3 Support vector machines

Now we are ready to define the support vector machine (SVM) optimization
problem. There are two small changes we need to make: first, with SVMs, we
typically write out the bias term separately from the dot product, and do not
minimize the bias (this turns out to the work fine: the magnitude of the bias
never affects the size of the margin because it affects all datapoints equally).
Second, we’ll put back in the slack variables that we had in the perceptron, as
otherwise the constraints may not be perfectly satisfiable: we can’t always find
a decision boundary that perfectly separates the positives from the negatives,
so we need to penalize misclassifications using the hinge loss, and multiply
the slack variables by some constant λ that determines how much we prefer
correct classifications versus maximizing the margin. So the complete SVM
optimization is given by

min
w,w0,s1,...,sN

||w||2 + λ

N∑
i=1

si such that

yi(w · h(xi) + w0) + si ≥ 1 ∀i ∈ {1, . . . , N}
si ≥ 0 ∀i ∈ {1, . . . , N}

This is simply a variant of the perceptron from before that also tries to maximize
the size of the margin. The reason this method is called the support vector
machine is because the boundary depends on only a small number of “support
vectors” (datapoints) that are close to the boundary: either points that are
classified incorrectly, or points that are classified correctly but for which the
margin is exactly 1

||w|| . Moving these points will change the decision boundary,

but moving any other point will not.

4

	Linear Classifiers without Probabilities
	Maximizing the margin
	Support vector machines

