CSE 446 Bias-Variance & Naïve Bayes

Administrative

- Homework 1 due next week on Friday
 Good to finish early
- Homework 2 is out on Monday
 - Check the course calendar
 - Start early (midterm is right before Homework 2 is due!)

Today

- Finish linear regression: discuss bias & variance tradeoff
 - Relevant to other ML problems, but will discuss for linear regression in particular
- Start on Naïve Bayes
 - Probabilistic classification method

Bias-Variance tradeoff – Intuition

- Model too simple: does not t
 fit the data well
 - A *biased* solution
 - Simple = fewer features
 - Simple = more regularization

- Model too complex: small changes to the data, solution changes a lot
 - A *high-variance* solution
 - Complex = more features
 - Complex = less regularization

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance

Training set error

- Given a dataset (Training data)
- Choose a loss function

- e.g., squared error (L₂) for regression

• Training error: For a particular set of parameters, loss function on training data:

$$\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2$$

Training error as a function of model complexity

Calculate View Polynomial Reset

Prediction error

- Training set error can be poor measure of "quality" of solution
- Prediction error (true error): We really care about error over all possibilities:

$$\mathcal{E}_{\text{true}}(w) = E_{p(x)} \left[(x_i \cdot w - y_i)^2 \right]$$
$$= \int p(x) \left(x_i \cdot w - y_i \right)^2 dx$$

Prediction error as a function of model complexity

Computing prediction error

- To correctly predict error
 - Hard integral!
 - May not know y for every **x**, may not know p(x)

$$\mathcal{E}_{\text{true}}(w) = \int p(x) \left(x_i \cdot w - y_i \right)^2 dx$$

- Monte Carlo integration (sampling approximation)
 - Sample a set of i.i.d. points {**x**₁,...,**x**_M} from p(**x**)
 - Approximate integral with sample average

$$\mathcal{E}_{\text{true}}(w) \approx \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2$$

Why training set error doesn't approximate prediction error?

• Sampling approximation of prediction error:

$$\mathcal{E}_{\text{true}}(w) \approx \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2$$

• Training error :

$$\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2$$

- Very similar equations
 - Why is training set a bad measure of prediction error?

Why training set error doesn't approximate prediction error?

• Sampling approximation of prediction error:

$$\mathcal{E}_{\text{true}}(w) \approx \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2$$

• Training error :

$$\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2$$

• Very – W

w was optimized with respect to the training error! Training error is a (optimistically) biased estimate of prediction error

Test set error

- Given a dataset, randomly split it into two parts:
 - Training data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntrain}\}$
 - Test data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntest}\}$
- Use training data to optimize parameters w
- Test set error: For the *final solution* w*, evaluate the error using:

$$\mathcal{E}_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2$$

Test set error as a function of model complexity

Select points by clicking on the graph or press Example

Calculate View Polynomial Reset

C Fit X to Y

Degree of polynomial: 13 💌 🖲 Fit Y to X

Example Select points by clicking on the graph or press Degree of polynomial: 1 💌 🕫 Fit Y to X C Fit X to h

Overfitting (again)

- Assume:
 - Data generated from distribution D(X, Y)
 - A hypothesis space H
- **Define:** errors for hypothesis $h \in H$
 - Training error: $error_{train}(h)$
 - Data (true) error: $error_{true}(h)$
- We say *h* overfits the training data if there exists an *h*' ∈ *H* such that:

$$error_{train}(h) < error_{train}(h')$$

and

$$error_{true}(h) > error_{true}(h')$$

Summary: error estimators

• Gold Standard:

$$\mathcal{E}_{\text{true}}(w) = \int p(x) \left(x_i \cdot w - y_i \right)^2 dx$$

• Training: optimistically biased

$$\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2$$

• Test: our final measure

$$\mathcal{E}_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2$$

little data

infinite data

Error as function of regularization parameter, fixed model complexity

Summary: error estimators

• Gold Standard:

What you need to know (linear regression)

- Regression
 - Basis function/features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Regularization
 - Ridge regression math & derivation as MAP
 - LASSO formulation
 - How to set lambda (hold-out, K-fold)
- Bias-Variance trade-off

Back to Classification

- Given: Training set $\{(x_i, y_i) \mid i = 1 ... n\}$
- Find: A good approximation to $f: X \rightarrow Y$

Examples: what are *X* and *Y*?

- Spam Detection
 - Map email to {Spam,Ham}
- Digit recognition

- Map pixels to {0,1,2,3,4,5,6,7,8,9}
- Stock Prediction
 - Map new, historic prices, etc. to \hat{A} (the real numbers)

Can we Frame Classification as MLE?

- In linear regression, we learn the conditional P(Y|X)
- Decision trees also model P(Y|X)
- P(Y|X) is complex (hence decision trees cannot be built optimally, but only greedily)
- What if we instead model P(X|Y)?
- [see lecture notes]

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

MLE for the parameters of NB

• Given dataset

Count(A=a,B=b): number of examples with A=a and B=b

• MLE for discrete NB, simply:

Prior:

$$p(y = j) = \frac{\operatorname{Count}(y = j)}{\sum_{j'} \operatorname{Count}(y = j')}$$

– Likelihood:

$$p(x_k = \ell | y = j) = \frac{\operatorname{Count}(x_k = \ell \text{ and } y = j)}{\sum_{\ell'} \operatorname{Count}(x_k = \ell' \text{ and } y = j')}$$

A Digit Recognizer

• Input: pixel grids

• Output: a digit 0-9

Naïve Bayes for Digits (Binary Inputs)

- Simple version:
 - One feature F_{ij} for each grid position <i,j>
 - Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.

- Here: lots of features, each is binary valued

• Naïve Bayes model:

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

- Are the features independent given class?
- What do we need to learn?

Example Distributions

