CSE 446
Bias-Variance & Naive Bayes



Administrative

* Homework 1 due next week on Friday

— Good to finish early

* Homework 2 is out on Monday
— Check the course calendar

— Start early (midterm is right before Homework 2 is
duel!)



Today

* Finish linear regression: discuss bias & variance
tradeoff

— Relevant to other ML problems, but will discuss for
linear regression in particular

* Start on Nailve Bayes

— Probabilistic classification method



Bias-Variance tradeoff — Intuition

* Model too simple: does not, | ©

fit the data well E o
— A biased solution o
— Simple = fewer features _ o
— Simple = more regularization

* Model too complex: small | M
changes to the data, t
solution changes a lot

— A high-variance solution
— Complex = more features
— Complex = less regularization




Bias-Variance Tradeoff
* Choice of hypothesis class introduces learning
bias
— More complex class — less bias
— More complex class — more variance
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Training set error

* Given a dataset (Training data)
* Choose aloss function
— e.g., squared error (L,) for regression

* Training error: For a particular set of
parameters, loss function on training data:




Training error as a function of model
complexity
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Prediction error

* Training set error can be poor measure
of “quality” of solution

* Prediction error (true error): We really
care about error over all possibilities:

gtrue(w) — Ep(m) [(xz "W — yi)Q



Prediction error as a function of model
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Computing prediction error

* To correctly predict error

 Hard integral!
 May not know y for every x, may not know p(x)

Etrue(W) = fp(a:) (x; - w — y,,;)Q dx

 Monte Carlo integration (sampling approximation)
* Sample a set of i.i.d. points {x,,...,x,,} from p(x)
* Approximate integral with sample average




Why training set error doesn’t approximate
prediction error?

e Sampling approximation of prediction error:

1 Ntest 5
gtrue(w) ~ N Z (372 "W — yz)

test i—1

* Training error :
Ntraln
1 2

gtrain(w) — N (xz w — yz)

train —1

* Very similar equations

— Why is training set a bad measure of prediction error?



Why training set error doesn’t approximate
prediction error?

e Sampling approximation of prediction error:

Ntest
1 2
gtrue(w) ~ (37@ w — yz)
Ntest o
1=1
* Training error :
Ntraln

gtrain(w) — N Z (:E’L "W — yz)Q

©overyl W was optimized with respect to the training error!
Training error is a (optimistically) biased
estimate of prediction error



Test set error

* Given a dataset, randomly split it into two
parts:

— Training data — {Xy,..., Xy¢rain}
— TeSt data - {x]_;---) thest}

e Use training data to optimize parameters w

e Test set error: For the final solution w*,
evaluate the error using:




Test set error as a function of model
complexity
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Overfitting (again)

e Assume:

— Data generated from distribution D(X,Y)
— A hypothesis space H

* Define: errors for hypothesis h € H

— Training error: error,,;,(h)
— Data (true) error: error,,.(h)

« We say h overfits the training data if there exists
an 2’ € H such that:

errortrain(h) < errOrtrain(h’)
and
errortrue(h) B errortrue(h’)



Summary: error estimators

 Gold Standard:

Eurne(w) = / p(@) (2 - w — yi)? da

* Training: optimistically biased

1 Ntrain ,
gtrain(w) — N (xz w yz)
train 4
Test: our final measure
1 Niest )
gtest (w) — Nyour (371 "W — yz)



Error as a function of number of training
examples for a fixed model complexity
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Error as function of regularization
parameter, fixed model complexity
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Summary: error estimators

 Gold Standard:

Be careful

* Trai

Test set only unbiased if you never

do any learning on the test data

If you need to select a hyperparameter, or the model,
. Test] Or anything at all, use the validation set (also called a
holdout set, development set, etc.)

es
1 . . 2




What you need to know
(linear regression)

* Regression
— Basis function/features
— Optimizing sum squared error
— Relationship between regression and Gaussians

* Regularization

— Ridge regression math & derivation as MAP
— LASSO formulation
— How to set lambda (hold-out, K-fold)

e Bias-Variance trade-off



Back to Classification

* Given: Training set {(x;,y)) |[i=1...n}
* Find: A good approximationto f : X =2Y

Examples: what are Xand Y ?
« Spam Detection

~ Map email to {Spam,Ham} > Classification
+ Digit recognition

— Map pixels to {0,1,2,3,4,5,6,7,8,9}

« Stock Prediction
— Map new, historic prices, etc. to A(the real numbers)



Can we Frame Classification as MLE?

In linear regression, we learn the
conditional P(Y|X)

Decision trees also model P(Y|X)

P(Y|X) is complex (hence decision
trees cannot be built optimally, but
only greedily)

What if we instead model P(X]Y)?
[see lecture notes]
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MLE for the parameters of NB

e Given dataset

— Count(A=a,B=b): number of examples with A=a and B=b

 MLE for discrete NB, simply:

— Prior:

(= f) = Count(y = j)
Py =J > Count(y = j’)
— Likelihood:

Count(xy = £ and y = j)

plax =Ly =j) = >_p Count(zy, = ¢ and y = j)



A Digit Recognizer

* Input: pixel grids

* Qutput: a digit 0-9
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Nailve Bayes for Digits (Binary Inputs)

« Simple version:
— One feature F; for each grid position <i,j>

— Possible feature values are on / off, based on whether intensity
IS more or less than 0.5 in underlying image

— Each input maps to a feature vector, e.g.
’1 — (Fp,o=0 Fp1 =0 Fgp=1 Fg3=1 Fpa=0 ...F1515=0)

— Here: lots of features, each is binary valued
* Naive Bayes model:
P(Y|Fpp..-Fi515) o P(Y) ] P(F; ;1Y)
t,J
« Are the features independent given class?
 What do we need to learn?



Example Distributions

P(Y) P(F31 =on|Y) P(F55=on|Y)
1 |01 1 |0.01 / 1 |0.05
2 0.1 2 10.05 2 |0.01
3 |01 3 10.05 3 10.90
4 |01 / 4 10.30 4 |0.80
5 |0.1 - 5 |0.80 5 |0.90
6 |0.1 6 |0.90 6 |0.90
7 |01 7 |0.05 7 10.25
8 |0.1 8 | 0.60 8 |0.85
9 |01 9 |0.50 9 |0.60
0 |01 0 |0.80 0 |0.80




