CSE 446 Linear Regression

Administrative

• Linear algebra review session tomorrow

Lecture Notes

- Regularization (put a prior on the weights)
- See lecture notes

Ridge Coefficent Path

From Kevin Murphy textbook

LASSO ("least absolute shrinkage and selection operator"):

$$\hat{w}_{\text{LASSO}} = \arg\min_{w} \sum_{i=1}^{N} \left(x_i \cdot w - y_i \right) + \lambda \sum_{j=1}^{d} |w_j|$$

- Linear penalty pushes more weights to zero
- Allows for a type of *feature selection*
- But, not differentiable and no closed form solution....

Geometric Intuition

LASSO Coefficent Path

From Kevin Mur textbook

How does varying lambda change w?

$$\hat{w}_{\text{ridge}} = \arg\min_{w} \sum_{i=1}^{N} \left(x_i \cdot w - y_i \right) + \lambda \sum_{j=1}^{d} w_j^2$$

- Larger λ ? Smaller λ ?
- $As \lambda \rightarrow 0?$
 - Becomes same a MLE, unregularized
- $As \lambda \rightarrow \infty?$
 - All weights will be 0!

How to pick lambda?

Experimentation cycle

- Select a hypothesis *f* to best match training set
- Tune hyperparameters on held-out set
 - Try many different values of lambda, pick best one
- Or, can do k-fold cross validation
 - No held-out set
 - Divide training set into k subsets
 - Repeatedly train on k-1 and test on remaining one
 - Average the results

What you need to know

- Regression
 - Basis function/features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Regularization
 - Ridge regression math & derivation as MAP
 - LASSO formulation
 - How to set lambda (hold-out, K-fold)
- Bias-Variance trade-off (covered on Friday)