
CSE 446: Week 2 
Decision Trees 



Administrative 

• Homework goes out today, please contact 
Isaac Tian (iytian@cs.washington.edu) if you 
have not been added to Gradescope 

mailto:iytian@cs.washington.edu


Recap: Algorithm 

until Base Case 1 or Base Case 2 is reached: 

 step over each leaf 

  step over each attribute X 

   compute IG(X) 

 choose leaf & attribute with highest IG 

 split that leaf on that attribute 

 repeat 



MPG Test set 
error 

The test set error is much worse than the training 
set error… 

…why? 



Decision trees will overfit!!! 

• Standard decision trees have no 
learning bias 
– Training set error is always zero! 

• (If there is no label noise) 

– Lots of variance 

– Must introduce some bias towards 
simpler trees 

• Many strategies for picking simpler 
trees 
– Fixed depth 

– Fixed number of leaves 

– Or something smarter… 



Decision trees will overfit!!! 



One Definition of Overfitting 
• Assume: 

– Data generated from distribution D(X,Y)  

– A hypothesis space H 

• Define errors for hypothesis h ∈ H 

– Training error: errortrain(h) 

– Data (true) error: errorD(h) 

• We say h overfits the training data if there exists 

an h’ ∈ H such that: 

errortrain(h) < errortrain(h’) 

 and 

     errorD(h) > errorD(h’) 



Recap: Important Concepts 

Training 
Data 

Held-Out 
Data 

Test 
Data 



Pruning Decision Trees 

[tutorial on the board] 

[see lecture notes for details] 

IV. Overfitting idea #1: holdout cross-validation 

V. Overfitting idea #2: Chi square test 



A Chi Square Test 

• Suppose that mpg was completely uncorrelated with maker. 

• What is the chance we’d have seen data of at least this 
apparent level of association anyway? 

By using a particular kind of chi-square test, the answer is 
g((x1, y1) … (xn, yn)) = 13.5% 
 
We will not cover Chi Square tests in class. See page 93 of the original 
ID3 paper [Quinlan, 86]. 



Using Chi-squared to avoid overfitting 

• Build the full decision tree as before 

• But when you can grow it no more, start to 
prune: 

– Beginning at the bottom of the tree, delete splits 
in which g((x1,y1),…,(xn,yn)) > MaxPchance 

– Continue working you way up until there are no 
more prunable nodes 

 

MaxPchance  is a magic parameter you must specify to the decision tree, indicating 
your willingness to risk fitting noise 



Pruning example 

• With MaxPchance = 0.05, you will see the 
following MPG decision tree: 

When compared to 
the unpruned tree 
• improved test set 

accuracy 
• worse training 

accuracy 



MaxPchance 
• Technical note: MaxPchance is a regularization parameter that helps us bias 

towards simpler models 

Smaller Trees Larger Trees 

MaxPchance 
Increasing Decreasing Ex

p
ec

te
d

 T
es

t 
se

t 
Er

ro
r 

We’ll learn to choose the value of magic 
parameters like this one later! 



Real-Valued inputs 
What should we do if some of the inputs are real-valued? 

mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia

bad 6 199 90 2648 15 70 america

bad 4 121 110 2600 12.8 77 europe

bad 8 350 175 4100 13 73 america

bad 6 198 95 3102 16.5 74 america

bad 4 108 94 2379 16.5 73 asia

bad 4 113 95 2228 14 71 asia

bad 8 302 139 3570 12.8 78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

good 4 120 79 2625 18.6 82 america

bad 8 455 225 4425 10 70 america

good 4 107 86 2464 15.5 76 europe

bad 5 131 103 2830 15.9 78 europe

Finite dataset, 
only finite 
number of 
relevant 
splits! 

Infinite 
number of 
possible split 
values!!! 



“One branch for each numeric value” 
idea: 

Hopeless: with such high branching factor 
will shatter the dataset and overfit 



Threshold splits 

• Binary tree: split on 
attribute X at value t 

– One branch: X < t 

– Other branch: X ≥ t 

Year 

<78 ≥78 

good bad 

• Requires small 
change 
• Allow repeated splits on 

same variable 
• How does this compare 

to “branch on each 
value” approach? 

Year 

<70 ≥70 

good bad 



The set of possible thresholds 

• Binary tree, split on attribute X 

– One branch: X < t 

– Other branch: X ≥ t 

• Search through possible values of t 

– Seems hard!!! 

• But only finite number of t’s are important 

– Sort data according to X into {x1,…,xm} 

– Consider split points of the form xi + (xi+1 – xi)/2 



Picking the best threshold 

• Suppose X is real valued with threshold t 

• Want IG(Y|X:t): the information gain for Y when testing if 

X is greater than or less than t 

• Define:  

• H(Y|X:t) = 

        H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t) 

• IG(Y|X:t) = H(Y) - H(Y|X:t) 

• IG*(Y|X) = maxt IG(Y|X:t) 

• Use: IG*(Y|X) for continuous variables 



Example 
with MPG 



Example 
tree for our 
continuous 

dataset 



What you need to know about 
decision trees 

• Decision trees are one of the most popular ML tools 
– Easy to understand, implement, and use 

– Computationally cheap (to solve heuristically) 

• Information gain to select attributes (ID3, C4.5,…) 

• Presented for classification, can be used for regression 
and density estimation too 

• Decision trees will overfit!!! 
– Must use tricks to find “simple trees”, e.g., 

• Fixed depth/Early stopping 

• Pruning 

• Hypothesis testing 


