CSE 446: Week 2 Decision Trees

Administrative

 Homework goes out today, please contact Isaac Tian (<u>iytian@cs.washington.edu</u>) if you have not been added to Gradescope

Recap: Algorithm

until Base Case 1 or Base Case 2 is reached: step over each leaf step over each attribute X compute IG(X) choose leaf & attribute with highest IG split that leaf on that attribute repeat

Decision trees will overfit!!!

•	Standard decision trees have no	x_1	x_2	x_3	x_4	y
	learning bias	0 0	0	0	0 1	? ?
	 Training set error is always zero! 	0	0	1	0	0
	 (If there is no label noise) 	0	0	1	1	1
	 Lots of variance 	0 0	1 1	0	0 1	0
	 Must introduce some bias towards 	0	1	1	0	0
	simpler trees			1	1	?
•	Many strategies for picking simpler	1	0	0	0 1	1
	trees	1	0	1	0	?
	– Fixed depth	1 1	0 1	1 0	$\begin{array}{c} 1 \\ 0 \end{array}$?
	 Fixed number of leaves 	1	1	0	1	?
	Or comothing amortor	1	1	1	0	?
	– Or something smarter	1	1	1	1	?

Decision trees will overfit!!!

One Definition of Overfitting

- Assume:
 - Data generated from distribution D(X, Y)
 - A hypothesis space H
- Define errors for hypothesis $h \in H$
 - Training error: error_{train}(h)
 - Data (true) error: $error_D(h)$
- We say *h* overfits the training data if there exists an *h*' ∈ *H* such that:

$$error_{train}(h) < error_{train}(h')$$

and

 $error_D(h) > error_D(h')$

Recap: Important Concepts

Pruning Decision Trees

[tutorial on the board] [see lecture notes for details]

IV. Overfitting idea #1: holdout cross-validationV. Overfitting idea #2: Chi square test

A Chi Square Test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is g((x1, y1) ... (xn, yn)) = 13.5%

We will not cover Chi Square tests in class. See page 93 of the original ID3 paper [Quinlan, 86].

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which g((x1,y1),...,(xn,yn)) > MaxPchance
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

• With MaxPchance = 0.05, you will see the following MPG decision tree:

MaxPchance

• Technical note: MaxPchance is a regularization parameter that helps us bias towards simpler models

We'll learn to choose the value of magic parameters like this one later!

Real-Valued inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!! Finite dataset, only finite number of relevant splits!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
•	•	:	:	•	:	•	:
•	•	:	:	:	:	•	:
•	•	:	:	•	:	•	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree: split on attribute X at value t
 - One branch: X < t</p>
 - Other branch: $X \ge t$
- Requires small change
 - Allow repeated splits on same variable
 - How does this compare to "branch on each value" approach?

The set of possible thresholds

- Binary tree, split on attribute X
 - One branch: X < t</p>
 - Other branch: $X \ge t$
- Search through possible values of t
 - Seems hard!!!
- But only finite number of t's are important
 - Sort data according to X into $\{x_1, ..., x_m\}$
 - Consider split points of the form $x_i + (x_{i+1} x_i)/2$

Picking the best threshold

- Suppose X is real valued with threshold t
- Want *IG(Y/X:t)*: the information gain for Y when testing if X is greater than or less than t
- Define:
 - *H*(*Y*/*X*:*t*) =

H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)

- IG(Y|X:t) = H(Y) H(Y|X:t)
- $IG^*(Y|X) = max_t IG(Y|X:t)$
- Use: *IG**(*Y*/*X*) for continuous variables

Example with MPG

Example tree for our continuous dataset

What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing