
Week 2: Maximum Likelihood Estimation

Instructor: Sergey Levine

1 Introduction: estimating parameters of a bi-
nomial distribution

Let’s say that we want to predict the probability that a loaded coin (or, say, a
thumbtack) will land on a particular side – either pointy end up (which we call
heads) or point end down (which we call tails). We can frame this as trying
to estimate the probability of an event. Call this event x, where x ∈ {T,H}.
How can we learn p(x = H)? Well, as with all machine learning problems, we
need four things: we need the data, the hypothesis space, the objective, and the
algorithm.

Question. What is the data?

Answer. The data consists of samples of x, which we can obtain, for example,
by flipping the coin (or thumbtack...). Imagine we flip it five times, we get
samples: x1 = H, x2 = T , x3 = H, x4 = T , x5 = H. We will use D = {xi} to
denote our dataset of N samples.

Question. What is the hypothesis space?

Answer. We would like to estimate p(x = H) (since p(x = T ) = 1 − p(x =
H)). This is a binomial distribution, and it can be parameterized by a single
real-valued parameter, θ, where p(x = H) = θ. So the hypothesis space is
θ ∈ [0, 1].

Question. What is the objective?

Answer. We need to design an objective. Fortunately, probability theory
can be our guide here: we can try to find the hypothesis θ that makes the
observed dataset D the most probable. This is the maximum likelihood solution.
Finding the maximum likelihood solution is referred to as maximum likelihood
estimation. The likelihood of the data is simply the probability of observing the
entire dataset given the hypothesis θ:

p(D|θ) = p(x1, x2, x3, x4, x5|θ)
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We assume that the individual samples are independent from each other and
all distribution according to the same distribution p(x). This assumption is
very common in machine learning, and we call it “independently and identically
distributed” (i.i.d.). Recall that if two variables x and y are independent, then
p(x, y) = p(x)p(y). So we can rewrite our likelihood as:

p(D|θ) =

N∏
i=1

p(xi|θ)

Now, p(xi|θ) ∈ [0, 1], so as N increases, p(D|θ) → 0, since it’s the product of
many numbers, all of which are less than 1 (unless p(x|θ) is deterministic). This
is not bad by itself, because computers struggle to represent extremely small
numbers, it’s very convenient for us to instead use the log of the likelihood as
our objective:

log p(D|θ) =

N∑
i=1

log p(xi|θ)

This is why we typically say that maximum likelihood estimation maximizes the
log-likelihood. So our learning problem can be written as:

θ ← arg max
θ

N∑
i=1

log p(xi|θ)

Question. What is the algorithm?

Answer. We need to solve the above optimization problem. We know that
p(x = H|θ) = θ and p(x = T |θ) = (1 − θ). Let αH be the number of heads
in our dataset, and let αT be the number of tails. We can then rewrite our
log-likelihood as:

N∑
i=1

log p(xi|θ) = αH log θ + αT log(1− θ).

Now, if we want to find the value of θ that minimizes this, we can simply
compute the derivative with respect to θ and set it to zero:

d

dθ
[αH log θ + αT log(1− θ)] = αH

d

dθ
log θ + αT

d

dθ
log(1− θ)

=
αH
θ
− αT

1− θ
= 0.
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We then solve for θ:

αH
θ
− αT

1− θ
= 0

αH
θ

=
αT

1− θ
1− θ
θ

=
αT
αH

1

θ
− 1 =

αT
αH

1

θ
=
αT
αH

+ 1 =
αT + αH
αH

θ =
αH

αT + αH
.

This is precisely the answer we expect: simply count up the number of heads,
and divide by the size of the dataset.

2 How much data do we need?

Given the above method for estimating the most probable parameter θ, a nat-
ural next question to ask is: how certain are we that this estimate is correct?
Intuitively, we feel more confident in our estimate if we’ve seen more data: that
is, if N (the number of samples in D) is larger. But how many samples N do
we need to achieve a certain level of confidence?

In machine learning theory, these kinds of questions are often analyzed
through the “probably approximately correct” (PAC) framework. First, Ho-
effding’s inequality tells us that the probability that the error in our parameter
estimate θ is greater than some constant ε can be bounded as following:

p(|θ − θ?| ≥ ε) ≤ 2e−2Nε
2

.

Unpacking this inequality, we can see that, as N increases, the probability of
the error being greater than ε decreases exponentially. We will not cover the
derivation of Hoeffding’s inequality in this class (this is something you might
see in a graduate class), but we will do a little exercise to understand how it
can be used to determine how much data we need to confidently estimate the
parameter θ.

Question. About how many samples (N) do we need in order to be certain
with 95% probability that we’ve estimated θ with an error at most ε = 0.1?

Answer. This is PAC learning: we want to know that we are probably (with
95% probability) approximately (within ε = 0.1) correct. We typically use δ to
denote the probability of being wrong, so that δ = 1−0.95 = 0.05. So we would
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like p(|θ − θ?| ≥ ε) ≤ δ. One way to ensure that this is the case is to use the
bound, and choose N such that

p(|θ − θ?| ≥ ε) ≤ 2e−2Nε
2

≤ δ.

So now we simply solve for N :

2e−2Nε
2

≤ δ
log 2− 2Nε2 ≤ log δ

N ≥ log 2− log δ

2ε2
=

log 2/δ

2ε2

Now we just plug in δ = 0.05 and ε = 0.1 to get:

N ≥ log 2/0.05

2× 0.12
=

log 40

0.02
≈ 3.7

0.02
= 185

So if we want to be certain with 95% probability that we are off by at most 0.1,
it is sufficient to have 185 samples.

A variety of simple maximum likelihood estimation problems have bounds on
sample complexity of this type. Some of the more complex estimation problems
we will see later in the course do not have such nice closed form bounds, but the
intuition is typically the same: the more samples we have, the more accurately
we can estimate the model parameters. When we discuss learning theory, we
will see some more general methods to estimate how the required amount of
data changes as we vary our hypothesis class and dataset size.

3 Distributions over parameters

We saw how to compute the parameters θ that maximize the probability of the
dataset. But here is an interesting thought: can we compute the parameters θ
that are most probable given the dataset? Are they the same?

In order to answer this question, we must first construct the distribution
over θ conditioned on the data: p(θ|D). We can obtain this from Bayes rule:

p(θ|D) =
p(D|θ)p(θ)
p(D)

We already know what p(D|θ) is. The distribution p(θ) is called a prior – we’ll
come back to this in a second, but for now let’s just say we don’t know anything
about θ, so p(θ) = 1 (it’s a constant). Since θ ∈ [0, 1], this integrates to 1. The
denominator is

p(D) =

∫
p(D|θ′)p(θ′)dθ′

That looks really complicated, but we can just not worry about it, since it’s a
constant, so we can just write:

p(θ|D) ∝ p(D|θ)p(θ)
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and figure out the constant later. Let’s plug in the equations for the binomial
distribution:

p(θ|D) ∝ θαH (1− θ)αT

This kind of distribution is called the Beta distribution (with parameters αH+1
and αT + 1), and it is normalized by the Beta function:

p(θ|D) =
θαH (1− θ)αT

B(αH + 1, αT + 1)

For reference p(θ|D) is called the posterior, because it is our distribution over
θ after observing D. p(θ) is the prior. The Beta function is just defined as the
integral of θαH (1 − θ)αT from 0 to 1. Since it does not depend on θ, we can
find the most likely θ just by setting the derivative of log(p(D|θ)p(θ)) to zero.
But that’s exactly the same as what we had before, so the maximum likelihood
estimate of θ is simply the most probable θ under a uniform prior.

Now imagine that if you believe that the coin is very likely to be a fair
coin. Can we incorporate this prior information into the estimate of the most
probable θ? We can do this by changing the prior p(θ) from a uniform prior
to a more informative one. There are a number of different choices, but from
looking at the form of the posterior, one thing that might jump out is that we
should choose a form for p(θ) that makes it easy to multiply with the likelihood
p(D|θ). This is called a conjugate prior: a type of prior where the product with
the distribution has an analytic answer. Since our distribution is binomial, the
conjugate prior for this type of distribution is just the Beta distribution – the
same type of distribution as our posterior! Note that in general, the conjugate
prior does not have to be of the same type as the posterior.

The Beta distribution prior is given by

p(θ) =
θβH−1(1− θ)βT−1

B(βH , βT )
,

where βH and βT are the parameters of the prior. For example, if we believe
that the coin is fair, we can set βH = βT . The larger the value, the more
“confident” we are in this prior. If we look at the posterior, we get

p(D|θ)p(θ) ∝ θαH+βH−1(1− θ)αT+βT−1

This is just a Beta distribution with parameters αH +βH and αT +βT ! We can
compute the derivative and set it to zero to recover the most likely value of θ
like we did before, but there is an even easier way: observe that the posterior
with prior parameters βH and βT is exactly the same as the posterior with a
uniform prior, if we instead observed αH + βH − 1 heads and αT + βT − 1 tails.
That means that

θ =
αH + βH − 1

αH + βH + αT + βT − 2

Note in particular as N = αH +αT increases, the prior is gradually “forgotten,”
so the prior has the strongest effect on the estimate when N is small.
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