
Week 3: Linear Regression

Instructor: Sergey Levine

1 Recap

In the previous lecture we saw how linear regression can solve the following
problem: given a dataset D = {(x1, y1), . . . , (xN , yN)}, learn to predict y from
x. In linear regression, we learn a function f(x) = x · w = ŷ or, when using
features, f(x) = h(x) ·w = ŷ, where h(x) is the feature or basis function. We
saw that linear regression corresponds to maximum likelihood estimation under
the model y ∼ D(w · x, σ2), and that the optimal parameters can be obtained
according to

ŵ = (XTX)−1XTY,

or, equivalently, according to

ŵ = (HTH)−1HTY

when using features. In today’s lecture, we’ll analyze overfitting in linear re-
gression, and see how it can be addressed by imposing a prior on w.

2 Overfitting & regularization

Let’s imagine that we are trying to learn a 1D function, where x is one-dimensional
and h(x) corresponds to monomials up to some power d:

h(x) =


1
x
x2

. . .
xd

 .
If our dataset has size N , then we can always fit the dataset perfectly (with
zero error) if d ≥ N − 1. However, as d increases, a zero-error fit might not
actually be desirable, because it might produce an extremely jagged and multi-
modal function that is unlikely to reflect the actual trends present in the data.
More generally, whenever we have a high-dimensional input space or a highly
expressive feature set, such that the dimensionality of w is large, we are liable
to overfit. Recall the definition of overfitting: if we find a hypothesis w, but
there exists some other hypothesis w′ such that its training error is worse but
its test error is better, then we are overfitting.

1

In linear regression, one of the most recognizable symptoms of overfitting
is the existence of very large values in w. This would happen, for example,
when erroneously fitting a high-degree polynomial with near-perfect accuracy
to a noisy dataset. Note that this overfitting is quite similar to something we
discussed last week in the context of maximum likelihood estimation: if we flip
a coin and “accidentally” observe heads five times in a row, MLE might lead us
to conclude the coin would always come up heads. But that is unreasonable.

Question. How can we mitigate overfitting in linear regression?

Answer. Same as last week, we can switch from MLE to a Bayesian approach,
and compute the maximum a posteriori (MAP) estimate of the parameters w
instead. This involves imposing a prior on w: our reasonable prior belief about
what the parameters should be, before we’ve even seen the data.

A reasonable prior belief is that the parameters w should be small: this
would prevent the sort of huge parameters we might see when fitting a high-
degree polynomial with zero error.

Question. What kind of distribution might be suitable for representing the
prior on w?

Answer. Since each entry in w is continuous, real-valued, and unconstrained,
the Gaussian distribution is a good choice. In general, we could place a full
multivariate Gaussian prior on the entire vector w, but for now let’s assume
that we’ll place an independent Gaussian prior on each dimension of w, with
prior mean zero and prior variance σ2

0 , such that

log p(w) = − 1

2σ2
0

d∑
j=1

w2
j + const.

This means that for each dimension j of w, we have wj ∼ N (0, σ2
0).1 Combining

this prior with the likelihood, we get

log p(w|D) = − 1

2σ2

N∑
i=1

(yi − xi ·w)2 − 1

2σ2
0

d∑
j=1

w2
j + const.

From the form of this likelihood, we can see that the posterior is also Gaussian.
Just like before, we can compute the derivative of this quantity and set it to
zero to determine the optimal weights:

d

dw

− 1

2σ2

N∑
i=1

(yi − xi ·w)2 − 1

2σ2
0

d∑
j=1

w2
j

 =
1

σ2

N∑
i=1

xi(yi − xi ·w)− 1

σ2
0

w

= ~0.

1This means that w ∼ N (~0, σ2
0I): that is, w is distributed according to a d-dimensional

multivariate Gaussian.

2

Rewriting this in matrix notation like before, we get

1

σ2
XT (Y −Xw)− 1

σ2
0

w = ~0

1

σ2
XTY − 1

σ2
XTXw − 1

2σ2
0

w = ~0

1

σ2
XTY =

1

σ2
XTXw +

1

σ2
0

w

XTY = XTXw +
σ2

σ2
0

w

XTY = (XTX +
σ2

σ2
0

I)w

(XTX +
σ2

σ2
0

I)−1XTY = w.

Our solution is therefore given by w = (XTX + σ2

σ2
0
I)−1XTY. The only change

from standard linear regression is that we’ve added the term σ2

σ2
0
I to the matrix

that we are inverting. In practice, we will often use a single parameter λ = σ2

σ2
0
,

so that the solution has the form w = (XTX+λI)−1XTY. We will discuss how
to choose the parameter λ in the next section.

This method corresponds to maximum a posteriori (MAP) estimation of the
optimal parameters w under the objective log p(w|D), and it is often referred to
as ridge regression. But we can see here that it is simply the natural consequence
of imposing a zero-mean Gaussian prior on the parameters w.

In applying ridge regression in practice, we might also impose a different
prior variance σ2

0,j on each dimension wj of w. For example, if we use features
h(xi) (recall that the math is exactly the same if we use features!), we might
have a constant feature that is equal to 1, called the bias feature. We often do
not want to regularize the weight on this feature to allow for whatever bias best
fits the data, so we might set its weight to 0 (which corresponds to σ2

0,j =∞).
In the case where we use different weights on different features, the solution
becomes

w = (XTX + Λ)−1XTY,

where Λ is a diagonal matrix of weights.

3 LASSO

This is covered in the slides.

4 Choosing the regularization amount

The value λ (or Λ) in ridge regression is a hyperparameter : it is not learned by
our learning algorithm, but rather must be specified in advance. Hyperparam-

3

eters can be set by hand using domain knowledge, or they can be optimized by
using a hold-out set.

First, let’s try to understand how the setting of λ changes the weights that
we get. First, as λ → 0, ridge regression turns into ordinary linear regression
(and our prior approaches the uniform prior). That means that we will fit the
training data better (our training error will decrease), but we might experience
more overfitting if we have too many parameters and too little data (our test
error might increase).

As λ → ∞, the w2
j terms in the objective dominate, and w → 0. All

of our weights zero out, and we just get a constant prediction of zero (or a
constant if we don’t regularize the bias term). In this case, we are least likely
to see overfitting, but we will also experience very high training and test error,
because we’re essentially ignoring the input xi in making our predictions.

For best results, we need to find the “perfect” value λ that gives the model
enough expressive power to get low training and test error, but not so much
expressive power as to overfit to the training data. In practice, even guessing a
very low value of λ, such as λ = 10−4, can already help a lot. For example, if
XTX is nearly rank-deficient (that is, it has eigenvalues close to zero, making
it very hard to invert), adding λI to it before inversion can make it much easier
to invert, making linear regression much more stable. It also quickly removes
the really pathological solution that have coefficients in the millions or billions.
So a quick fix to an ill-conditioned linear regression problem that is easy and
often effective is to choose λ = 10−4.

However, if we want to find a better setting of λ to get the best performance,
we need to use our hold-out data. This can be done either manually or auto-
matically. In the manual approach, we simply try a few different settings of λ
that we think are reasonable, fit to the training data, and test how well we do
on the hold-out data. We then take the best one. The automated approach
consists of automating this process. Performance on the hold-out set does not
necessarily follow a unimodal curve, but in practice this can be good enough
to find a good value, so we could simply choose a lower and upper bound for
λ, and then perform a search. We recursively update the lower bounds λ0 and
upper bound λ1 to find the best value of λ. Letting Eholdout(λ) denote the error
on the hold-out set for the optimal solution for hyperparameter λ, the search
might look like this:
One good choice for the constant ρ is based on the golden ratio: ρ = (3−

√
5)/2.

5 K-fold cross-validation

Using a hold-out set to manually or automatically optimize hyperparameters
such as λ is reasonably effective, but it requires us to carve out a large enough
hold-out set from our data to provide an accurate estimate of the generalization
error of our model. This means we have less data to use for actually fitting
the training data. One idea to reduce the size of the hold-out set and still get
a good estimate of the generalization error for optimizing hyperparameters is

4

Algorithm 1 Hyperparameter search

1: Start with minimum λ0 and maximum λ1
2: while not converged (e.g. |Eholdout(λ1)− Eholdout(λ0)| > ε) do
3: λ′0 ← λ0 + ρ(λ1 − λ0)
4: λ′1 ← λ1 − ρ(λ1 − λ0)
5: if Eholdout(λ′0) < Eholdout(λ′1) then
6: λ0 ← λ′0
7: else
8: λ1 ← λ′1
9: end if

10: end while

to use K-fold cross-validation. In this approach, we partition the dataset into
K folds of equal size, each one somewhat smaller than an ordinary hold-out
set. When we want to evaluate Eholdout(λ), we evaluate it as the average of K
separate errors:

Eholdout(λ) =
1

K

K∑
k=1

Eholdout,k(λ),

where Eholdout,k(λ) is the error we get by testing on the kth fold a model that
is trained on all of the other folds (with hyperparameter λ). Since we average
together hold-out error on many folds to get Eholdout(λ), each fold can be smaller
than a standard hold-out set. In fact, if we set K = N (the total size of our
dataset), we train N models, and test each of them on just one datapoint. This
is called hold one out cross-validation. It is computationally expensive, but
involves the least loss of data to a hold-out set.

5

	Recap
	Overfitting & regularization
	LASSO
	Choosing the regularization amount
	K-fold cross-validation

