
Week 5: Logistic Regression & Neural Networks

Instructor: Sergey Levine

1 Summary: Logistic Regression

In the previous lecture, we covered logistic regression. To recap, logistic regres-
sion models and optimizes the conditional log likelihood:

L(w) =

N∑
i=1

log p(yi|xi,w) =

N∑
i=1

(
yih(xi) ·w − log[exp(h(xi) ·w) + 1]

)
.

This likelihood cannot be optimized analytically, so instead we compute a gra-
dient, according to

∇L(w) =

N∑
i=1

h(xi)
[
yi − p(y = 1|xi,w)

]
.

Then, we use an algorithm called gradient ascent to optimize L(w), by repeat-
edly performing the following operation:

w(j+1) = w(j) + α∇L(w(j)).

This performs MLE to determine w. We can also use MAP, where we put a
prior on w. For example, a Gaussian prior produces the likelihood

L(w) =

N∑
i=1

(
yih(xi) ·w − log[exp(h(xi) ·w) + 1]

)
+ λ

|h(x)|∑
k=1

w2
k.

We can also use logistic regression to classify multiple different classes. If y ∈
{1, . . . , Ly}, we can use

log p(y = j|x,W) =
exp(h(x) ·wj)∑Ly

j′=1 exp(h(x) ·wj′
,

where the parameters now correspond to a weight matrix W = [w1, . . . ,wLy
].

2 Comparison with Näıve Bayes

Logistic regression solves the same kind of problem as näıve Bayes, but uses
a different object and a different estimation procedure. The two algorithms

1

have slightly different strengths and weaknesses, and present some interesting
tradeoffs. First, in the case where x ∈ RK (and h(x) = x)1 – that is, when all
features are real-valued – it can be proven that näıve Bayes and logistic regres-
sion are representationally equivalent, meaning that for every logistic regression
classifier, we can find a näıve Bayes classifier that always outputs the same an-
swer, and vice-versa. This requires näıve Bayes to use a Gaussian condition
distribution for each p(xk|y), and for all of these Gaussians to have the same
variance (but a different mean).

This representational equivalence makes it convenient to compare näıve Bayes
and logistic regression. We won’t derive the representational equivalence in de-
tail: it’s quite straightforward to obtain it from Bayes rule, and you may see
this on a homework exercise or (hint!) an exam question.

Question. What assumptions does näıve Bayes make that logistic regression
does not?

Answer. Näıve Bayes assumes that the features are independent of one an-
other. This is extremely convenient, because it allows us to estimate each con-
ditional p(xk|y) separately and in closed form. However, this assumption can
be quite simplistic.

Question. As the number of features K increases, which model is likely to
overfit more, logistic regression or näıve Bayes?

Answer. One way to think about this question is to imagine what happens if
a certain feature is replicated with a bit of noise added to it. For example, if we
have K features that are all equal in expectation, but corrupted with different
Gaussian noise. Näıve Bayes estimates each feature distribution independently,
so no matter how many features we have, näıve Bayes will perform about the
same. However, logistic regression will get worse and worse as the number of
features increases: as the number of features K exceeds the number of data-
points N , it will be easy for logistic regression to fit to the noise in the data. In
the extreme case, if we imagine that each feature is on average 0 but randomly
+1 or −1 with some (equal) but small probability, as K >> N , we can find for
each sample a feature that is +1 for only that sample, making it trivially easy
to overfit.

Based on this intuition, we can make a few conclusions about the relative
of performance of logistic regression vs. näıve Bayes. Indeed, these conclusions
can be proven to hold theoretically, though proving this is outside the scope
of this class. Näıve Bayes will tend to exhibit more bias, since the indepen-
dence assumption corresponds to a simpler model. That means that with less
data, näıve Bayes will overfit less, but as the amount of data increases, logistic

1In this section, I will drop the convention of using h(x) to represent the features and
simply denote them with x. As we’ve learned before, this doesn’t change of the math, it’s
just done here to match the notation in näıve Bayes.

2

regression will eventually perform better, since it doesn’t make the simplifying
assumption of feature independence. Correspondingly, näıve Bayes will continue
to perform well as the number of features increases, while logistic regression will
become more vulnerable to overfitting.

So, in short: näıve Bayes generally needs less data, while logistic regression
will generally find a better solution if it doesn’t overfit. In the case that the
features are truly independent and the amount of data is near infinite, it can
be shown that both methods will find the same solution if näıve Bayes uses
Gaussian conditionals with input-independent variance.

The other consideration, which is more obvious from inspecting the learning
algorithms, is that näıve Bayes classifiers can be learned extremely efficiently
and quickly, while logistic regression requires a comparatively more complex
gradient ascent procedure. This is typically not a big deal, but näıve Bayes
sometimes has a bit more flexibility than logistic regression. For example, it’s
easy with näıve Bayes to handle missing data: if some record is missing a certain
feature xk, we simply ignore that record when estimating p(xk|y), and during
inference, we can easily ignore features that are unknown. The same is not
possible with logistic regression.

3 From Logistic Regression to Neural Networks

Although we can often choose very expressive features h(x) for logistic regres-
sion, we sometimes don’t know exactly which features are needed to solve a
given classification problem. If we just use h(x) = x, the linear logistic re-
gression classifier can’t solve certain otherwise simple problems. For example,
imagine that x = [x1, x2], where x1, x2 ∈ {0, 1}, and y = x1 XOR x2, such
that y = 0 if x1 = x2 and y = 1 if x1 6= x2. If we have h(x) = x, no logistic
regression classifier can solve this task. To understand why, it’s enough to draw
a plot with x1 and x2 on the axes: the positive and negative examples cannot
be separated by a single line. However, we can observe that we can write the
XOR function as the following logical expression:

y = (x1 = 1 and x2 = 0) or (x1 = 0 and x2 = 1).

Note that the or operator can actually be implemented by a linear classifier, so
if we had two features h1 = (x1 = 1 and x2 = 0) and h2 = (x1 = 0 and x2 = 1),
we could set

p(y|x) =
exp(h1 + h2 − 0.5)

exp(h1 + h2 − 0.5) + 1
,

which can be implemented using logistic regression (though we need a bias
feature). So can we learn to extract h1 and h2 automatically? This turns out
to be quite easy if we have another “layer” of logistic regression that attempts
to output v1 and v2 (separately) from x1 and x2. For example, we can use:

h1 =
exp(8x1 − 4x2 − 6)

exp(8x1 − 4x2 − 6) + 1
.

3

Note that h1 > 0.5 when (x1 = 1 and x2 = 0) and less than 0.25 otherwise,
which means that h1 + h2 > 0.5 only when (x1 = 1 and x2 = 0) or (x1 =
0 and x2 = 1). This idea of using intermediate “layers” of logistic regression to
automatically construct features results in a model called a neural network.

Each layer in a neural network has weights W(`) = [w
(`)
1 , . . . ,w

(`)

|h(`)|]
T , where

each weight matrix has a number of rows equal to the number of “features”
(referred to as hidden units or neurons) at that layer. Note that by convention,
the weight vectors are rows of this matrix, so that

h(`) = σ(W(`)h(`−1)),

where σ(z) is a nonlinearity, which in the case of logistic regression is the logistic
function

σ(z) =
exp(z)

exp(z) + 1
=

1

1 + exp(−z)
.

By convention, we automatically add a bias feature to each layer and denote it
separately from the weight matrix at b(`), such that

h(`) = σ(W(`)h(`−1) + b(`)).

Question. How many hidden units does the XOR network have?

Answer. The XOR network has two hidden units, h1 and h2.

Question. What are the first layer weights in the XOR network?

Answer. Since there are two hidden units, we need a weight matrix W(1)

with two rows, and a 2D bias vector b(1). Based on the equations for h1 and
h2, we have:

W(1) =

[
8 −4
−4 8

]
b(1) =

[
−6
−6

]
.

Question. What are the second layer weights in the XOR network?

Answer. There is only one output, and therefore only one weight vector:

W(2) = [1 1] b(2) = −0.5.

In general, we could have different nonlinearity functions σ on the hidden
layers in the network. The sigmoid or logistic function is a popular choice.
Other popular choices include the hyperbolic tangent and, more recently, the
rectified linear unit, given simply by ReLU(z) = max(z, 0). We will discuss this
briefly later in the week.

Question. For the neural network presented above, what is the objective and
what is the model modeling?

4

Answer. Just like with logistic regression, we can optimize the neural network
with respect to the conditional likelihood

L(θ) =

N∑
i=1

log p(yi|xi, θ),

where the parameters θ are given by θ = {W(1),b(1),W(2),b(2)}. We can also
use neural networks for multiclass classification, regression, and other estimation
problems. Typically, neural networks optimize a conditional objective, though
it is also possible to build generative neural networks (that will not be covered
in this class).

We’ll discuss algorithms for training neural networks next time, along with
some discussion of their strengths and weaknesses.

5

	Summary: Logistic Regression & Neural Networks
	Comparison with Naïve Bayes
	From Logistic Regression to Neural Networks

