
Week 4: Logistic Regression

Instructor: Sergey Levine

1 Gradient Ascent on the Log-Likelihood

When we left off last time, we saw that we could represent a linear classifier in
terms of a linear function h(xi) · w, where the probability of a binary label is
given by

p(y = 1|x,w) =
exp(h(xi) ·w)

exp(h(xi) ·w) + 1

and

p(y = 0|x,w) =
1

exp(h(xi) ·w) + 1

Let’s write down the log-likelihood:

L(w) =

N∑
i=1

log p(yi|xi,w)

=

N∑
i=1

{
if yi = 0: log 1

exp(h(xi)·w)+1

if yi = 1: log exp(h(xi)·w)
exp(h(xi)·w)+1

=

N∑
i=1

{
if yi = 0: log 1− log[exp(h(xi) ·w) + 1]
if yi = 1: log exp(h(xi) ·w)− log[exp(h(xi) ·w) + 1]

=

N∑
i=1

− log[exp(h(xi) ·w) + 1] +

{
if yi = 0: 0
if yi = 1: h(xi) ·w︸ ︷︷ ︸

yih(xi)·w

=

N∑
i=1

(
yih(xi) ·w − log[exp(h(xi) ·w) + 1]

)
.

Now compute the gradient:

dL
dw

=

N∑
i=1

(
yih(xi)− h(xi) exp(h(xi) ·w)

exp(h(xi) ·w) + 1

)

=

N∑
i=1

(
h(xi)

[
yi − exp(h(xi) ·w)

exp(h(xi) ·w) + 1

])
.

1



Unfortunately, we can’t simply set the gradient equal to zero and solve for w in
closed form: there is actually no analytic formula for w in this case. Instead,
we can use a procedure called gradient ascent (or gradient descent, if we instead
minimize the negative log-likelihood).

Although we can’t find an optimal setting of the parameter vector w in closed
form, we know that, given some initial value w0, the log likelihood L(w) is going
to increase if we modify w0 and move it in the direction given by L

dw (w0), which
we refer to as the gradient and sometimes write as ∇L(w0). That is, we know
that

L(w0 + α∇L(w0)) ≥ L(w0).

for some small quantity α. We will use this intuition to devise an algorithm
called gradient ascent. This algorithm climbs the gradient to maximize L(w),
by repeatedly modifying w according to ∇L(w) and recomputing the gradient.
At the jth iteration of gradient ascent, we compute the (j + 1)th value of w
according to:

w(j+1) ← w(j) + α∇L(w(j)).

The size of the step that we take α is referred to as a learning rate or a step
size, and we typically use a small positive constant, such as 10−2. Choosing this
constant takes some care, as an excessively high α can cause us to overshoot the
optimal w, and a low α can cause learning to take a very long time. We can
try a few different values and choose the one that produces the best solution
(we don’t need a validation set for this, we can just use the likelihood of the
training set directly).

To derive the full gradient ascent update, let’s first revisit the equation for
the gradient:

dL
dw

=

N∑
i=1

(
h(xi)

[
yi − exp(h(xi) ·w)

exp(h(xi) ·w) + 1

])
.

Note that this is precisely equal to

dL
dw

=

N∑
i=1

h(xi)
[
yi − p(y = 1|xi,w)

]
.

So we can write the gradient ascent update for logistic regression as

w(j+1) ← w(j) + α

N∑
i=1

h(xi)
[
yi − p(y = 1|xi,w(j))

]
.

This has a natural geometric intuition: for each datapoint in the dataset, we
move w toward its attributes h(xi) if the label is 1 but p(y = 1|xi,w) is too
low, or away from h(xi) if the label is 0 but p(y = 1|xi,w) is too high.

The log likelihood for logistic regression is convex: that means that there
is only one unique optimum, and we can reach that optimum by following the
gradient. That means that gradient ascent converges to the optimal solution, so

2



long as we choose a reasonable learning rate. Theoretically, so long as the learn-
ing rate decreases at a particular rate, we are guaranteed to eventually reach
the global optimum. In practice, we might reduce the learning rate gradually
during learning, for example by multiplying it by 0.9 ever 100 or 1000 iterations.

We can also use more advanced optimization algorithms, such as conjugate
gradient or LBFGS. These algorithms approximate Newton’s method by esti-
mating the curvature of the log likelihood function, and typically employ a line
search to set the learning rate automatically.

2 MAP Estimation

Like any other learning method, logistic regression is liable to overfit when the
training set is too small or the hypothesis class is too complex (for example
when too many different features are included). When logistic regression over-
fits, it tends to produce very large weights. Note that the decision boundary
f(x) = h(x) ·w = 0 remains in the same place as we scale w by some constant
to get βw, for any β ∈ R. However, as w increase in magnitude, the likelihood
of correctly classified training examples near the boundary will increase, since
their probabilities will be closer to 1.0. Of course, this can produce overfitting
if the number of such points is too small to localize the boundary correctly:
it’s better in this case to keep the boundary fuzzy and soft to accurately reflect
our uncertainty, instead of fitting every tiny detail of the training points with a
sharp and complex decision boundary.

Question. How can we mitigate overfitting?

Answer. Just like with linear regression and näıve Bayes, we can use maxi-
mum a posteriori (MAP) estimation to put a prior on the parameters w. We
can use the same priors as with linear regression: a Gaussian prior or a Laplace
(absolute value) prior. Let’s discuss the Gaussian prior:

p(w) =

K∏
k=1

1

σ0
√

2π
e
− w2

k
2σ20

Writing the equation for the log posterior, we get

log p(w|D) =

N∑
i=1

log p(yi|xi,w)− 1

2σ2
0

K∑
k=1

w2
k + const.

Like we did with linear regression, we’ll typically set a regularization constant
λ instead of using σ0. Making this change and substituting in the equation for
the log-likelihood, we get

L(w) = log p(w|D) =

N∑
i=1

(
yih(xi) ·w − log[exp(h(xi) ·w) + 1]

)
+
λ

2

K∑
k=1

w2
k,

3



and the gradient is given by

∇L(w) =

N∑
i=1

h(xi)[yi − p(y = 1|xi,w)]− λw

So we see that with a very simple modification to the gradient, we can regularize
the weights and prevent them from becoming very large.

Question. What is the gradient ascent update rule for MAP?

Answer. Just like before, we have

w(j+1) ← w(j) + α∇L(w(j))

and therefore

w(j+1) ← w(j) + α

(
N∑
i=1

h(xi)
[
yi − p(y = 1|xi,w(j))

]
− λw(j)

)
.

3 Multiclass Classification

What if we have more than two possible values of y? That is, y ∈ {1, . . . , Ly}.
We can still use logistic regression, but now instead of a weight vector w, we
have a weight matrix W, where each column of this matrix is a different weight
vector:

W =
[
w1,w2, . . . ,wLy

]
.

Then, we simply set the probability of each class according to:

p(y = j|x,W) ∝ exp(h(x) ·wj).

Since we know the probabilities must sum to 1, we know that

p(y = j|x,W) =
exp(h(x) ·wj)∑Ly

j′=1 exp(h(x) ·wj′)
.

We can then compute the gradient of the log-likelihood in exactly the same way
as before and perform gradient ascent on the entire matrix W.

Note that this representation is overcomplete. Indeed, we can represent an
equivalent multiclass classifier using a matrix W with only Ly−1 columns, since
we know that the probability of the last label y = Ly is given by

p(y = Ly|x,W) = 1−
Ly−1∑
j=1

p(y = j|x,W)

Deriving the corresponding equations for p(y = j|x,W) and the gradient is left
as an exercise.

4


	Gradient Ascent on the Log-Likelihood
	MAP Estimation
	Multiclass Classification

