
Week 4: Logistic Regression

Instructor: Sergey Levine

1 Linear Classification via Logistic Regression

So far, we learned about two kinds of classifiers: näıve Bayes, which models
and optimizes p(x, y), and decision trees, which can model p(y|x), but do not
actually optimize p(y|x) (instead, we use a heuristic method that does not ac-
tually optimize any well-defined objective, but tends to work well in practice).
Although näıve Bayes is flexible and optimizes a well-defined objective, its main
weakness is the unreasonable independence assumption on the attributes, which
can cause the method to fail in cases where these assumptions are strongly vi-
olated. For example, if we have two binary attributes and a binary label, and
y = 1 whenever x1 = x2, and y = 0 whenever x1 6= x2, näıve Bayes would
fail completely: assuming the dataset is split evenly between the two labels,
we would get p(y = 1) = 0.5, p(x1 = 1|y = 0) = 0.5, p(x1 = 1|y = 1) = 0.5,
p(x2 = 1|y = 0) = 0.5, and p(x2 = 1|y = 1) = 0.5: nothing would be learned,
and the classifier would simply guess each time.

Can we devise a classification method that both models and optimizes p(y|x),
without needing to model the relationship between different attributes or make
unreasonable independence assumptions? We can take inspiration for linear
regression, and devise a linear classification method. First, let’s look at the
intuition, and then we’ll build a probabilistic interpretation.

In linear regression, we fit a function that is linear in some features h(x),1

given by f(x) = w · h(x). If we want to solve a binary classification problem,
can we devise a classifier g(x) such that g(x) = 1 if f(x) > 0, and g(x) = 0
if f(x) ≤ 0? Such a linear classifier corresponds to drawing a line through the
feature space h(x) that separates the two classes.

If we want to build a probabilistic model p(y|x), this kind of hard linear
classifier is not very desirable. If we simply say p(y = 1|x) = 1 if f(x) > 0
and zero otherwise, then even a single mistake would give our entire dataset a
probability of zero (and a log-likelihood of −∞). The trouble with this approach
is that it does not model noise: it assumes that our classifier can be perfect.
Recall that in linear regression, we modeled noise by assuming that p(y|x) was
Gaussian. Can we construct a noise model for the classification case?

We would like this noise model to give equal probability to both labels when
f(x) = 0, for the probability of y = 1 to increase rapidly for f(x) > 0, and

1Remember to include the bias feature 1!

1

decrease rapidly for f(x) < 0. One good choice for a function that increases
rapidly for positive values is the exponential. So we can try the following:

p(y = 1|x) ∝ exp(
1

2
h(x) ·w).

We would like the classifier to be symmetric, so we’ll choose

p(y = 0|x) ∝ exp(−1

2
h(x) ·w).

The normalizing constant is then given by exp(1
2h(x) · w) + exp(− 1

2h(x) · w).
We can simplify this a bit by noting that

p(y = 1|x) =
exp(1

2h(x) ·w)

exp(1
2h(x) ·w) + exp(− 1

2h(x) ·w)
=

exp(1
2h(x) ·w)2

exp(1
2h(x) ·w)2 + 1

=
exp(h(x) ·w)

exp(h(x) ·w) + 1
.

It then follows that

p(y = 0|x) = 1− exp(h(x) ·w)

exp(h(x) ·w) + 1
=

exp(h(x) ·w) + 1− exp(h(x) ·w)

exp(h(x) ·w) + 1
=

1

exp(h(x) ·w) + 1
.

Now we’ve recovered the model for logistic regression. The name comes from
the fact that

exp(h(x) ·w)

exp(h(x) ·w) + 1
=

1

exp(−h(x) ·w) + 1

is the equation for the logistic function.
Let’s recap:

Question. What is the data?

Answer. The dataset D = {(x1, y1), . . . , (xN , yN)}, where y ∈ {0, . . . , Ly}
and x is a vector of K features. Note that each xk may be either categorical or
continuous: the logistic regression model doesn’t care about this. Note, however,
that if xk is categorical, the model assumes a certain semantic relationship
between sequential values of xk. In practice, if we have a categorical value, we
might choose to use a “one hot” encoding: if there are M possible values, we
might introduce M attributes, such that only one of them is 1 for any record,
and the rest are all 0.

Question. What is the hypothesis space?

Answer. The hypothesis space is defined by the weights vector x ∈ R|h(x)|,
which models

p(y = 1|x) =
1

exp(−h(x) ·w) + 1

Question. What is the objective?

2

Answer. The objective is the conditional log likelihood:

L(w) =

N∑
i=1

log p(yi|xi,w)

Question. What is the algorithm?

Answer. Let’s try to figure it out. First, write down the log-likelihood:

L(w) =

N∑
i=1

log p(yi|xi,w)

=

N∑
i=1

{
if yi = 0: log 1

exp(h(xi)·w)+1

if yi = 1: log exp(h(xi)·w)
exp(h(xi)·w)+1

=

N∑
i=1

{
if yi = 0: log 1− log[exp(h(xi) ·w) + 1]
if yi = 1: log exp(h(xi) ·w)− log[exp(h(xi) ·w) + 1]

=

N∑
i=1

− log[exp(h(xi) ·w) + 1] +

{
if yi = 0: 0
if yi = 1: h(xi) ·w︸ ︷︷ ︸

yih(xi)·w

=

N∑
i=1

(
yih(xi) ·w − log[exp(h(xi) ·w) + 1]

)
.

Now compute the gradient:

dL
dw

=

N∑
i=1

(
yih(xi)− h(xi) exp(h(xi) ·w)

exp(h(xi) ·w) + 1

)

=

N∑
i=1

(
h(xi)

[
yi − exp(h(xi) ·w)

exp(h(xi) ·w) + 1

])
.

Unfortunately, we can’t simply set the gradient equal to zero and solve for w in
closed form: there is actually no analytic formula for w in this case. Instead,
we can use a procedure called gradient ascent (or gradient descent, if we instead
minimize the negative log-likelihood).

3

	Linear Classification via Logistic Regression
	Gradient Ascent on the Log-Likelihood

