
CSE 446 Machine Learning, Spring 2016

Homework 4

Due: 2016/6/6

1 EM for Gaussian Mixture Model [40 points]

(Extended version of: Murphy Exercise 11.7) In this question we consider clustering 1D data with a mixture of 2
Gaussians using the EM algorithm. You are given the 1-D data points x = [1 10 20].

M step

Suppose the output of the E step is the following matrix:

R =

 1 0
0.4 0.6
0 1


where entry Ri,c is the probability of observation xi belonging to cluster c (the responsibility of cluster c for data

point i). You just have to compute the M step. You may state the equations for maximum likelihood estimates of
these quantities (which you should know) without proof; you just have to apply the equations to this data set. You
may leave your answer in fractional form. Show your work.

1. [4 points] Write down the likelihood function you are trying to optimize.

2. [8 points] After performing the M step for the mixing weights π1, π2, what are the new values?
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3. [8 points] After performing the M step for the means µ1 and µ2, what are the new values?

4. [8 points] After performing the M step for the standard deviations σ1 and σ2, what are the new values?

E step

Now suppose the output of the M step is the answer to the previous section. You will compute the subsequent E
step.

1. [4 points] Write down the formula for the probability of observation xi belonging to cluster c.
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2. [8 points] After performing the E step, what is the new value of R?
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2 Expectation Maximization [30 points]

Suppose there are the following four possible outcomes possible when you conduct an experiment: “compound W
is present” , “compound X is present”, “compound Y is present”, “compound Z is present”. Suppose we know the
probabilities of these events take the form:

• P (W ) = 1
2

• P (X) = µ

• P (Y ) = 2µ

• P (Z) = 1
2 − 3µ

(where µ is unknown). Note that this is valid probability distribution as it sums to 1. We then conduct multiple
experiments (done independently) and observe the outcomes of our experiments. Let nw, nx, ny, and nz be the
number of times we observed W , X, Y , and Z, respectively, in our experiments.

1. [10 points] What is the Maximum Likelihood Estimator for µ, given our data?
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Now, instead, suppose that we observe some new data where we are not able to observe when W or X occur,
but, instead, we only observe if the experiment resulted in either W or X. So we don’t know nw or nx, but we know
the sum nw,x = nw + nx. As before, we still observe ny and nz as before. We now intend to use the Expectation
Maximization algorithm to find an estimate of µ.

2. [10 points] Expectation step: Given µ̂, a current estimate of µ, what are the expected values of nw and nx
in terms of the µ̂ and the observed outcomes?

3. [10 points] Maximization step: Given n̂w and n̂x, the expected values of nw and nx, what is the MLE of µ?
Simply use the expression from part 1 with n̂w and n̂x, instead of nw and nx.
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3 Dimensionality Reduction [30 points]

PCA can be hard to visualize in dimensions higher than 3, but the intuition actually translates very well in
graphics modeling and image processing. In this question we will walk through dimensionality reduction and
reconstruction using the example of ”eigenbodies”.

We will define an eigenbody (which is related to eigenfaces, eigennumbers, eigencats, eigen-whatever-noun-you-
choose) as the decomposition of a 3D model of a collection of human bodies into its principal components. Each
data point represents one body, which can be written as a d-dimensional vector of sequential x, y, z coordinates
for each 3D vertex.

Note that this representation only makes sense if each index in the vector corresponds to the same vertex
position in every body model. (i.e. position i, i+1, i+2 always corresponds to x, y, z for the same point on the
left eye of every subject)

(a) [2 points] If each model has v vertices and each vertex is a point (x, y, z) in 3D space, what is the dimen-
sionality d of the data set?

(b) [4 points] If matrix B is the data matrix representing a set of n examples each consisting of v vertices,
state the dimensions of B in terms of n and v and write the Singular Value Decompositions of B for the
case when n = v. State the dimensionality of each matrix composing the SVD. What is the maximum
value of k, the number of principal components you are able to solve for with this data set?

NOTE: You may assume B is zero-mean.
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(c) [5 points] In general, the k principal components of matrix B are the k eigenvectors corresponding to the
k largest eigenvalues of the scaled covariance matrix 1

N BTB. Prove how the SVD of B also solves for the
eigenvectors of the covariance matrix. Do this by mathematically showing the equivalence of a component
of the SVD to the eigenvectors of 1

N BTB.

(d) [4 points] Reconstruction of a point in the original dimensionality can be achieved by adding a linear
combination of the principal components to the mean of the training set.

y = B̄ + Rw

Where R is a matrix of your principal component vectors. What is the dimensionality of R and what is
the interpretation of its rows/columns? For the problem of eigenbodies, list three examples of possible
qualities the first k principal components may represent. (For example, a principal component of an
eigenface may correspond to jaw width)
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(e) [5 points] Suppose you were given a human model represented by a d-dimensional vector y. It is possible to
solve for a weight vector w that represents the best approximation of y composed of a linear combination
of k<d orthonormal basis vectors. Formulate this as a linear regression problem by writing the objective
function as an argmin on w. Briefly explain the meaning of each variable in your objective function.

8



(f) [10 points] In general, the objective of PCA is to minimize the reconstruction error, defined by the
difference between the reconstruction using k basis vectors (like you created in the previous section) and
the reconstruction possible with all d basis vectors. For a given training matrix Y of d-dimensional vectors
yi, minimize the objective:

erecon =

N∑
i=1

(yi − ŷi)
2

Where

yi = Ȳ +
∑d

j=1 z
i
jrj

and

ŷi = Ȳ +
∑k

j=1 z
i
jrj

Define zij as the zero-mean projection of the i-th data point onto the j-th principal component

zij = (yi − Ȳ) · rj
Show that this reconstruction error is equivalent to N

∑d
j=k+1 rTj Σrj

where Σ is the zero-mean covariance matrix Σ = 1
N

∑N
i=1(yi − Ȳ)(yi − Ȳ)T

and explain how this shows that the first k principal components of Y are the k eigenvectors corresponding
to the highest eigenvalues of Σ.
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4 Programing Question (K-means) [50 points]

4.1 The Data

There are two files with the data on the course website. The first digit.txt contains the 1000 observations
of 157 pixels (a subset of the original 785) from images containing handwritten digits. The second file
labels.txt contains the true digit label (either 1, 3, 5, or 7 ). You can read both data files in with

import numpy as np

X = np.genfromtxt(‘digit.txt’)

Y = np.genfromtxt(‘labels.txt’, dtype=int)

4.2 The algorithm

Here is a quick review of how K-means algorithm works.

i. Select k starting centers that are points from your data set. You should be able to select these centers
randomly or have them given as a parameter.

ii. Assign each data point to the cluster associated with the nearest of the k center points.

iii. Re-calculate the centers as the mean vector of each cluster from (2).

iv. Repeat steps (2) and (3) until convergence or iteration limit.

Define convergence as no change in label assignment from one step to another or you have iterated 20
times (whichever comes first). Please count your iterations as follows: after 20 iterations, you should have
assigned the points 20 times.

For Step 1, please make sure that you deep-copy your data points when you select them as starting centers.
Otherwise, when you move centers, you will end up moving the data points as well.

Please be reminded that you are NOT allowed to use existing machine learning libraries such as scikitlearn.

4.3 Within group sum of squares

The goal of clustering can be thought of as minimizing the variation within groups and consequently
maximizing the variation between groups. A good model has low sum of squares within each group.

We define sum of squares in the traditional way. Let Ck be the kth cluster and let µk be the empirical
mean of the observations xi in cluster Ck. Then the within group sum of squares for cluster Ck is defined
as:

SS(k) =
∑
i∈Ck

|xi − µCk
|2

Please note that the term |xi − µCk
| is the euclidean distance between xi and µCk

, and therefore should

be calculated as |xi − µCk
| =

√∑d
j=1 (xij − µCkj

)2, where d is the number of dimensions. Please note

that that term is squared in SS(k). If there are K clusters total then the “sum of within group sum of
squares” is just the sum of all K of these individual SS(k) terms.

4.4 Mistake Rate

Given that we know the actual assignment labels for each data point we can attempt to analyze how well
the clustering recovered this. For cluster Ck let its assignment be whatever the majority vote is for that
cluster. If there is a tie, just choose the digit that is smaller numerically as the majority vote.

For example if for one cluster we had 270 observations labeled one, 50 labeled three, 9 labeled five, and
0 labeled seven then that cluster will be assigned value one and had 50 + 9 + 0 = 59 mistakes. If we add
up the total number of “mistakes” for each cluster and divide by the total number of observations, we will
get our total mistake rate, between 0 and 1.
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4.5 Questions

When you have implemented the algorithm please report the following:

i. [10pts] The values of sum of within group sum of squares and mistake rates for k = 2, k = 4 and
k = 6. Please start your centers with the first k points in the dataset. So, if k = 2, your initial
centroids will be the first two lines in digit.txt.

ii. [10pts] The number of iterations that k-means ran for k = 6, starting the centers as in the previous
item. Make sure you count the iterations correctly. If you start with iteration i = 0 and at i = 3 the
cluster assignments don’t change, the number of iterations was 4, as you had to do step 2 four times
to figure this out.

iii. [15pts] A plot of the sum of within group sum of squares versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Please start your centers randomly (choose k points from the dataset at random). What trend do you
expect to have and why?
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iv. [15pts] A plot of total mistake rate versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Please start your centers
randomly (choose k points from the dataset at random). What trend do you expect to have and why?

For iii. and iv., you should generate plots a few times until you get the trend you expect in case you get
unlucky with starting centroids. Please submit your code to Catalyst.
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